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AMSRACT'

Th designer of a oon=Vnc conrol is WM*ru~ faoe wif a confust 466"LlV~s
has been a prollaratlo of pNRoposed methds but the perlnarnpa co variosMsW g
under dffn *Vetoms and applications is; unknown. Furtiemorem, SMe otimal modW for 0
glven Ovesm might my with system usages in facL anm method COOld laer pro"
incOmpatible wIlk desireI ells chWNge unforseen at design ime.

One way to -approach. hSe* Problems Is, to avoid commitment to mny one nMthd.'IThis am
be donm by separat policy frm correctnes in the desig of the concuWrency'coA1oL
This approach allows the concrrecy control meth,4 to sslly be modillest logtn
desired performancecaatrmco t aif unfoeaesn performance us.aHe,11
approach has been successfully used for the, cas In which concurrency Is hidden fA~ii
recod management and application program This ame is dine mor -e prgcisl by
presetin a four-leve framework for transaction processing 81sm - gm.t

This framework is suitable for uniprocessor, mutpOcessor, or distributed syimm. Ingtoi
framork there we two eubayetems a concurrency control Wnd a glblmmomy mmuwsrol
tha are responsible for controlling access to all shind data ophects. The concwMvec
control and globa memory manager are appllcatln -idspendot I ad we esserial
autonomous. They may be functionally distributed between two processors, or dilstiutd
unorig many processors by partitioning t et of shared! dat objets Since access; to si
s@ared dat objects Is controlled by ths two subsystemns, all othe subsyatem may be

* ~distributed in any fashion desired. in particular, in computer networks all other subsstm
may be replicats .

A general paradigm- for concurrency control is developed in which trnactions q no
required to follow any given protocol. Instead, possible conflicts are etected, and a pokiy
doeerine -s how the possible conflict Is handled. Thus, the two-phase locking protocol is bus
one of many possible polcs the optimisti method for concurrency cono an be
ah-piesm e sd by anothe poliy. The paradigm Is designed so that regn dless of the choices
made by the poliy the datubasi remnains consistent Policies may be delne at dssign-tlms
or they may be defned by modules that are executed ot run-Sm. In ths labtor cows it is
possible to dyneinilcally change polciesoevn while the system Is I use, This is Meoan to
be falsity co --solIse for policy development and exp elk % ntallon.

The g~ba memory mna-ger designs support multi-verion obects, whic we and ao ashme
the granulit prOoem% for querie (reed-only transactions) by mait It W semaI for
queries to I -terctY wih oncurrency control. Om e properies oft ~i nmma
mnanage deigns ars, that now. verlsi of objects may be witen anyscitresue 1111
concurrent transeilons, and tha old veons @ o obset may be garbeg- as@lstd



earied point dt which It can be guwwlmd,ilW a* kutur Wansclon or qtwy will aONN -

1h vePlon. .LS
_ -"WA'M--. t 4c i z: : oplie tramcdo - pronesinM Vydm wo developed- fer G~M"4 S

dirIbu multl.mlcrop ocesor. This otou used rramcnc enmcl in W I ll
functions required by the paraftlm wo allaf, and, the -cWW conuw the umd-

pokm module imnng a number of policies, any o wich c be csm at-iWAMmW
The record manager of ths ae-supporW a W ml rebltonal view-at tow dalsla, uS !ft

one or more 8.weindexes for ach relation. The record manager wu Oepii, am

copies -of versions of shawedata oiects were cached. The ussfnes of t im n

bamework was lUusrad by the fac O the record manager, the m cml - ptm
was edier developed on a coimplely different centralized system, and requ*W o minmr

mo difctin to be usd In this stem.

Expe in, were perlomed with varyn numbers of processors and with variu s poli c
For this sy m, the elc of waNt due to loking provd to be negligbe, and so loking
policies generally gave the bat p*formanc. This result may not apply to olher aIomW
though: a an example of one of many posable dlfte -cm In this syeem klndval
procs0sr ae not routlrommed However, ualg a concurrency co l policy
modul, It is asy to ivesliae many differ concwrency contols on Wmy -M as

demtonstrated, by tes expermns
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1. Introduction

In ths introduction the nature of transaction processing wig be exemned, folWed by an
Identification of some of the problem unique to transaction processing. Thm, lW §iMg
the problem of concern here, this woru and Its relationship to previous work wE be
ajamarzed.

1.1. What Is Transaction Processing?

The nature of transaction processing sysems can bes be Illustrated by considwing a
number of examples. Some examples of commercial transaction processing systems include
banking, airline reservation, and inventory control systems; some office automation examples
include memo and appointment scheduling system an example of softwre nneer
support Is a documentation system where the documentation of modules Is added or edited
as the modules ar developed; finally, some general Information system exampleR include
bulletin boards, shared bibliographies, and personnel directories.

In all of these examples there Is an underlying database that is shared by a number of users.
Thus, the problem of transaction processing system design is an extension of the more
general problem of database design, and all problems of databas design are also probiems
In transaction processing system design. The distinguishing property of lastion
processing system is that any of the users sharing the database can in principle modify te
databmes

Since the database is shared, users must be restricted In the manner In wiich thW re
allowed to modify the database .- otherwise the database could easily become Winny
inconsistent (e.g., damaged access structures) and unusable, or externally incosistent (e.g.,
containing information not In agreement with reaity) and unreliable.

A formal definition of internal consistency Is implementation dependent. For examp if the
dalabase is structured as a tree, than the property that the graph formed by the nodes and
pointers in this structure actually be a tree is an internal consiseMncy property. In genea
internal consistency woperties w properties th can be determined to hiod or not by
examination only of the information in the database. The problem of preservin inernal
consistency leads naturally to the notion of a traneection: given a formal deflnitio of th
shared database and Its internal consistency, a transection can be formaly defined - a
procedure that modifis te database in such a fashion tht if ft dmes 6o tner,
con ment beore the trsaction is executed, then the database is Internally cat N ~be'
the transaction has completd. By resictn users to modifying do dambsee usn g only

* procedures at e songly belied to be transactions, etm though mOng o
corret e p ros th problem of preserving Internal consistency is paiyakMd .. ft

Sdditional problems of protection. recovery, and ccurrncy e sc belo,.
Hencefor cain a pmoedure Mt Is s gly, bell'd to be a "ewamin' 0lVa-
wansalion, saoe simupis of inri"011tn usa

-A
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smel coo & t0- NOas n raIwd 16 atwlem Nmh3 t * ~PlMAe. 01040w.
coaMW tihs paeIn *ahe md wodd" &W a query corresponds to ouss lde b at *ae
Ormal woeW." n, IMuetalsl In Plgtse 1.1. Nole Vt In al of do above inlonne dsemo pflsm
of tratsans, Iruwactons see. anal in Ilion of themk a Ow h part ofthe dalieme OWa
Is accemd by Ow trunesctimn. This Is probably because Vve ammacloions mod mw 1.n
the "re word,w ain ** red woMl, there Is a locality rcprle: b imef. canot in
go@ra affect each odhe unles the are "close", and few oble awca in soml be
h lmneusy mclose". In any cane, In moat transaction proceasing systems all tranactions

seem to be small In t sene. However, It is say to IMaoine seful wueVn of anl aims, as
dioul be clear from fte above eamnples. These genera propsutee of qusisa mid
tranacIOns have. bnipialon for tranacton procea9sysg eim dgn mand wiNl be
iscussed later.

TRANSACTION
PROCEGMM

0"RAL WORLO"

r ENTITES RECORDS *

award trnato

00SERM

fU 1.1 Trnato Procssin



4 DESGm OF CoNcumENcY CoNmaLs FOR TRNSACTION PI: sw OOw.SvsrS

The problem of guaranteeing external consistency is usually approechesd by pWalontKj
mechanisms -- the goal Is to allow each user to modify only those pats of the database for
which that user can be trusted or assumed, firl to know the true se of the corresponding

prt of the "real world", and second, to enter this information correctly. This is the
transction side of protection; there is also a query side of protection, where the goal is to
allow each user to access In a query only those parts of the database for which that user

has a right to examine.

1.2. Problems of Transaction Processing

Ignoring for the moment problem of databae design, those problem ntroduced by
transaction processing wilt now be considered. Two problems of transaction processing ..
increasing confidence that a procedure is in fact a transaction, and protection -- have
already been mentioned above. However, these problems are not unique to transaction
processing: the first problem can be seen as an instance of the more general problem of

program verification and testing, and the problem of designing protection mechanisms-- a
problem for any system with shared resources -- does not seem significantly changed by the
nature of transaction processing (however, protection policies may be more complex, as in

tatistical databases).

Another problem is that of recovery. The database can become internally inconsistent due
to hardware failures or software errors; it can also become externally inconsistent due to
human errors. In such cases It is desirable to restore the database to some earlier Mate that

is believed to be consistent, relying on the hopefully increasing reliability of the lower levels
of memory hierarchies for recovery of the previous state. However, it is also- desirable to
undo as little as possible, that is to restore the database to the most recent such state. This
latter goal can be very important in some transaction processing applications (e.g., for

economic reasons), thus in a sense making the problem unique to transaction processing,
even though It is a desirable goal for any system.

The final problem is that of concurrency: even if transactions individually preserve internal

consistency, concurrent execution of transactions may cause internal consistency to be lost,

as shown by the following simple examp.

The database consists of four integer variables X, Y, Z, and W. Furthermore,

intleralconslstencyrequiresthatX+Y+Z+W 4. If currenty X = 1, Y a 3,Z
W - 0, consider the following interleaved execution of two transactions A and 8 (Z

and W are unused here, but will be referred to below). Note tt temp is a local
variable for each transaction.



ITROoucTIoN 5

Transaction A Transaction B tempA, te'nm X1 Y, Z, W
move 1fromnX to Y move lIfrom Yto X , ,3, 0, 0

(1) temp:a X l, 1, 3,0,0
(2) tamp:.V 1 3, 1, 3.0, 0
(3) Y : atMP.1 1,3, 1 ,2.,0,0
(4) tqmp:W X 1, 1. 1, 2, 0.0
(5) X atemp-1 1, 1, 0, 2, 0, 0
(6) tempmY Z1, 0,2, 0, 0
(7 V:n t&mp+1 21,0, 3,0, 0
(8) X:- temp .1 2, 1, 2, 3. 0, 0

Clearly, each transaction individually preserves X+Yt.Z+W = 4, but the result is that'
X +Y + Z + W -5. A transaction processing subsystem that prevents or resolves interactions
such as this will be called a concurrency control.

At fors this problem may not seem significantly diferent from the general synchronization
problem (wee [Andler 79) for a survey). However, thee is a fundamental diference: In
general, the objects that will be accessed by a transaction cannot be determined In advance
of the actual accesses. This is In contrast to an operat system, say, where t sharved
data structures accessed by a particular module are usually determined at design time. The
problem Is more closely related to that of allocation of shared resources, with no prior
claiming of resouces. This similarity haa led historically to loclcing-style concurrency
controls, that is, concurrency controls In which access to an object is In some came
restricted to at moat one transaction. However, there are many more concurrency controls
then locking concurrency controls (for example, see Chapter 5). The difference is ta
concurrent access to an object need not be disastrous, as It usually would be i t were to a
Ump drkve, for example.

The reason that accesse cannot be predicted in advance is that the action t*iwn by a
transaction are in general dependent on the data red. This can be true at all level of the
sysigem. For example, at the conceptual level (sse Chapter 2), It is easy to I sqsies
Woanaclions of the form: "for all X, Y satisfying certain constraints, If X ( Y than update X,
othewise update Y-.

An exum-pl at the physical momus level is the use of dynamic Index structures (as
Appendix I). In such case fth set of object that will be accessed by a transaction, other
Owtn the root of the Indlex, Is cvOpltely unitnown prior to execution (wee FWIgu1

77-7 !i
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FRgure 1.2. Access Path Determined at Execution-Tkme

Since accesas cannot In general be predicted In advance. It will be necessary to abort
tranactions 0.e., undo afl modifications to the ared database). Considler the example of
transactions A and B above. Until saep (4) is reached. It kos as wel could have bum the
cam that A would access X and Z only and that 8 would access Y and W only. Howver,
once step (4) Is reached, one of the two tranwctons will eventually have to be aborted.
MAlo, it Is desirable to allow users or application programns to abort ransactins
These, then, awe some of the problem introuced by transaction processing. However

' solutions to these problemns must take into account the underlyin 1ata1 sysemer. Sont
of the inadequacies In existing database systemns result from "eeds to p-oneon (1) m deft
for (2) mnore uers, (3) more qukckly, (4) more reliably, a@d (65) he.xpenash"i. Oft cunest
approach to lhese Inadequacies relles on the rapidly decreasng =9a of p oceeig pmr.
Apparently, though, the cat of large, reliable memory and various special devicee (ach as
high-qualit printers) Is not decreasing nearly so rapidly. These economic onle~n
have led to archtectures such as that of FWgur 1.3, in which (cheap processin power Is

dlglrlb tha bt (expensive) large, rellable memory utd special devices ahared,

The architecture of Figure 1.3 seem Mdaly sulted for andally vion4we* pes -@
applications; the problem intduced by transaction proceesing in this aei lo e-W tis
architecture efectively In a higlyaimeed applicain. For eump~lvifsM $w mmurity
control proble by executingi transaction sequentally (baft pinssesing would In gswq
be unacceptable since only the ceal optrwudb tle oay4gs dRl
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Figure 1.3. Personal Cownputer Network with Shared Expensive Devices

is often true for uniWocessor systems as well, where there may actually be parallel
processing due to muple / devices).

1.3. Problems Considred Here

The mor prolem,consldered here is that of concurrency control design, ubject to t
constraints. The first contraint Is that the concurvency control should be as alcon1
independent as possile. The advartges of this are ovewhemi, and m morM fully
discussed In Chapter I

The second constraln is me of efficiency. The archilecture of Figure 1.3 Is Just a eX009p
the concurvency control should aploy to other architectures a wet. A prOm Is *A a
psilicuier concurrency control could be eficont for som architectumes and no ftr 110m
Even gkvn the architecture, there many variableL such m t nmd mmmrm

bwxith, probability of transetion conflct a-ero tansacmo md qmuy slif. A. The
secon constaint Othn Is tha the concurenc control should be general: offaWuOW
et0rls sWubd to -ehip explicit design c lNa (auch aI T it i - d dpn ee

should be rerlble, -- the shuld be no hidden de cIN8s Thi reaft In a d
1ha can be. tatilored for a specilIc enrviren by 11dthe remaini1g deio viteda



8 DESIGN OF CONcuF.RENc CONTROLS FOR TRANSACTON PROCEssiG SYsTUes

Another problem considered here Is that of query size. As noted above, queries can be
arbitrarily large. But queries do not modify the database; It seems that It should be possible
to run queries without any concurrency control Interaction. In fact this is the come, and

several solutions will be preseted, but the solutions rely on multi-version object This then
raises the problem of garbage collecting old versions, which is considered here as wel.

Multi-version objects are also of use In distributed systems for determining when cached

copies of shared objects are "out-of-date", and they ae generally useful for recovery

purposes.

A related problem is one of transaction size. Even if most transactions are small, there may

be some occasional large transactions (e.g., a transaction that physically reorganizes the
database). Furthermore, poor database design can result In conceptually small transactions

physically accessing large parts of the database. This is known as the granularity problem,
and can be solved by hierarchical concurrency controls, such as that discussed in [Gray 78].

Another approach is to attempt to design the database so that large transactions are rare.

This is the approach assumed here, and for this reason, earlier work related to one aspect of

this problem -- design of dynamic index structures -- is presented in Appendix I. This is also

a problem in design at higher levels: an example often used to illustrate a large transaction

is one that raises all salaries in an employee file by 5%, say -- however, if salaries were not
stored In absolute terms, but instead were stored as relative values, with a single data Item

giving the conversion, this apparently large transaction becomes very small. Furthermore,

this design can be generalized If necessary to contain a number of conversion factors for

different clasms of employees. This example is mentioned only to show that the necessity

for large tansactions is not always clear. In any come, even If there are rge transaction

In most applications they will be rem, and It is trivial to generalize non-hisrarchIcal

concurrency controls to simple hierarchical concurrency controls -- for example, an option

can be added so that transactions can request that the entire datss be locked. ,nal,

the effective use of hierarchical concurracy controls requires advance knowledge of the

behavior of some Vansactions, contrary to the first constraint above. For thOe reasons

hierarchical concurrency controls we not considered here.

1.4. Summary of this Work

The problems of transaction processing considered hehre been dewsbed abov. A l9W

of this thesis is to solve these problems In such a fashion th the design wil be imsile In a
wide vari of applications and system This problem is made more dicm t by go feM go
an Initislly acceptMe design could later prom to be unaccepisble If Me design umpeslo
me violated. Furthermore, this diffilt Is becoming ever larger a the vnr ane MI o
multiprocsso and computer netwo systems grow: due to the added camplfe of tweo
sstems, f t ae in gan er many mor aftnatve desn Imn in a wunlprow
system, and seco, A is much mor difficult to predict In afto how ft oim s I s Vn

copae



INTRODUCTION 9

C.ne well-known approach to this problem Is information-hiding y b oleta dei

decisions, and decomposing the system Into modules that hide these decisions, a much

more flexible design results. In Chapter 2 a design framework for transaction processing
systems is developed based on ,nformation.-hidng principles. This frmework has two
subsystms, a concurrency control and a memory manager, that control access to all shared

data objects (it is assumed that In distributed systems the memory manager is decomposed
into a number of local memory managers, and a global memory manager). Due to those

mjbsyslems, the framework can be used In a wide variety of systems, some examples of

which ae given. The properties the concurrency control must satisfy are also developed in

Chapter 2 using a formal model that has sufficient detail to be immediately applicable In
practice.

In Chapter 3 an overview of a system using the decompositi of Chapter 2 is psee.
The design decisions that are common to various subwystems we discussed, and the

communication protocols between subsystems are given.

Another approach to the generaty problem may be called correctness/polcy serafon.

When designing a module to solve a given problem, decisions we made at seme lvels.
ranging from the level of fundamental correctness to the level of pure policy. For emmple, in

the case of concurrency control, the module must be designed so that Internal inconsistency
of the database is never allowed due to Interactions between concurrent transactions -- ths
is a fundamental correctness property. It is also desil in some applications th whm

transactions conflict, the transaction with the earlier sawing time be given priority - clearly a

policy. By separating these levels of decisions. and then applying inlormAlon-hidkng, a
general design results. In Chapter 4 a design Ipaadigm for concurrncy controls Is

developed using only those assumptions ta we necessary for corctnes application
indspndenemad practicality. This paradigm has the property thast regardless of the

decisions made by any particular policy, thecon rncycontro wiremain reu us-Ot
orect

Policies may be defined staticaly at designI.e, or they may be defined dynslicely by
po cy modules that are executed at run.time. This lAr appoach males It very eas to

expriment with policies.'since'solicies can be changed even while the sas-le In um
Furthemx", ths makes possible a new am of reasrch in con cyc l dei tha
of designing concurrency controls that dynamicall adapt to sym usage so a to OpIn

The prope ty t the concurency control remaine fumentaly corec regudss @ f t

poly is M useu fr d eig nig and maintaining poles. since t policy dsilg has a
high degM of hsed.. As an Musabon of ti freedom, In ChapW 6 a set of buft
poicies Is developed I wch & tansaction me tated uniomly without plk* Pe
resu" is 330 dMliOM policies T1hese policies should be considered only as a begiring in
fth sitad of poles. sinc In pra cc hee, w# e a variet of awneimt thW Wil rmW
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valuable. Two extensions that are often necessary, deadlock detection and queuing of

requestsa we described.

In Chapter 6 several design s for a global memory manager we developed. This eubysiyam

supports multi-version objects, and is used to solve the granularity prolem for quries by
malkng it unneesary for querie to ieract with te conicurwrcy ontr o. A design for
garbage collection, In which old version of objects are deltd at the eiest point at which
it can be guaranteed that they will never again be accessed, Is also presented. -

A complete transaction processing system using these designs was developed for the Cm-
distributed mult-microprocessor. This system used a concurrency control in which ll

functions required by the paradigm were available, and the concurrency control usted a

policy module implementing all basic policies, any of which could be chosen at run-time.
Record managers were replicated, and copies of shared data objects were cached. The

throughput limitations of this system were Investigated, and experiments were performed
using several policies. This system and the expariments are described In Chapter 7. A

generalizatn of the record manager used In this system Is given in Appendix I, and
algorthms developed for the concurrency control are given In Appendix II. Thes algorithms

should apply directly to any transaction processing system using the framework of Chapter 2.

Chapter 8 contains conclusions and a discussion of further research.

1.5. Relationship to Previous Work

In early work on the concurrency control problem, the two-phN locking protocol w

developed [Awaran at al 761, (Stearns ot at 70D. An Implicit sasumpdon behind two-phm
locking is that transactions should be controlled so as prevent aborts I at all po aIble

Starting from a different premise, that transactions should never wait for access to an object,

a radically different optimistic method for concurrncy control was developed in [Kung Nd
J Robinson 81). As an example of the difference between the two approaches, in an opimistic

method deadlock will never occur (since transactions never wait), and so deadlock detlection-

Is unnecessary; on the other hand, using an optimistic method, transactions are much more
likely to be aborted. What the porformance diOfrnces would be between the two
approaches In any given application was unknown. This suggesed the problem of fdeiging
a more general concurrency control that would be capable of both methot I an
application, experiments could easily be conducted (since both metods are fdenmIv
correct in the same sesm), and the "bet method could then be ued. This poe m

the strting point for this thesis. generaized as follows the general conc.fffy 00mitOl
should be capable of any method that nt lled certaln explclt asmumnpil O eSe
asaumptions, the primary one Is that the concurrncy conol mum guante al l
(se Section 2.6); the remnning assumptions ham to do with oppli 0 Uii-demob ad
practicality (m Section 44).

Jepractical concurrency controlr can be de signe withou regard hor t panulay p Oble
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but as discussed above, this seems to be a significant problem only for queries. This
* problem Is nicely solved using multi-version objects, and Is especially approphat for the

concurr ncy control design developed here, since aei.lablty Is guaranteed In an abcl*
* known order (se Section 4.5 for a discussion on why this is necessary). The use of mult-

version objecW in distributed database systems has previously been investigated in [leed
78]. The major diffrences between their use by Reed and their use here we: (1) as used
by Reed, version numbers (pseudo-times In Reed's terminology) are detemined during the
course of a transaction, whereas here, sequentially numbering the successful commits of
transactions, the version numbers of the objects written by a transaction re the aem@ as t
commit number; (2) due to the distributed nature of version number assignment, Reed must
largely avoid the garbage collection problem, and queries require conwrency contro
support, whereas here version numbers are managed by conceptually cenalized emNies,
with the results that garbage collection algorithms can be developed, and that quers do not
require concurrency control support.

The mapping of the transaction processing system framework of Chapter 2 to a distributed
architecture was influenced by the Medusa operating systmn (a general-purpose opaft
system for Cm- - sm [Ousterhout et al 801), and by te work of Garcia-Moina (me (Gra.
Molina 79]). If Medusa were extended to be a databsee operating system (in the mne of
[Gray 78)), using the mapping of Chapter 2, the global memory manager and conurency
control would be seen as new utiltkes, and the local memory manager would be se as a
new type of kernel. An alternative design would be to include the concurrency control and
global memory manager -s pert of a kernel (a copy of which runs on every node) -- howmr,
Garcla-Moms simulated a variety of centralized and distributed concurrency controls, and

found that the centralized concurrency controls in most cases gave bet perform nm

Finally, the literature for concurrency control has now grown very large, as can be seen from
the recent survey [Bernstein and Goodman 81]. Although much of the prevau work on
concurrency control has had a strong influence here, as Bernstein and Goodman conkclde,
all the various designs can be se as covbinatons and variais of a few basic
technique&. A major differen ce of the approach here Is tha fundeamental correctness has
been smpsaimd from policy. This approach was moivated by e desi of the Hydr
operating sowm (m [Wuf et. o 74). and by Ow work of Everhart (Evehart 791).

4. ________________|I______
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2. Design Principles
An overall strcture for transacton processing systems wiH now be described, based on
himalmor.hidlng/dstoWaindepn principles. This Is followed by a fom development
of the notons of sialzlity and cond forming a basis for concurrency cotol design.

2.1. On the Criteria to be Used in Decomposing (Transaction
Processing) Systems into Modules

The title of this section refers, of course, to the paper by Parnas [Parnas 72). As discussed
there and elswhere, one approach to wstom design is information-hiding, Ie., the
decomposition of the system into modules based on difficult or changeable design decisions,
with each module designed so as to hide one decision from the othem. This approach has
been demonstrated to have groat advantages In decreasing system development and
maintenance time, and in Increasing confidence in system correctness. These advantages
are widely believed to outweigh any resultant efficiency disadvantages, if In fact any such
disadvantages do result.

The information-hiding principle, when applied to database design, has come to be known as
data-Independence, which for example Date defines as "the Immunity of applications to
change in soage stucture and acces stratogy" (Date 77.

The most far-reaching decisions In databae design are those of choice of data models.
This is comparable to the more general problem of choice of data structures in
programming. A problem in database design is that there am many dat modeis that ae
vaiously most approplate depending on the level at which the design is approached, ranging
from the physical access level, where one would naturally like to think of a " item" as a
disk block or segment. to the user interface level, where one might think of a "dla inem" as
a record of some type, or as a collection of records of the same type (e.g., a relation), or
perhaps as ome kind of entity suitable for display on a CRT.

This Is a common problem of large syslems, and can be soved by abstractlion. In deabse
design, separation of the design decision on data models at three Ievels of bsIrafont
the physical access (Ineml) leve, the ogkical a m (conceptka eveL and th .w

access (exernal) level, has led to the so-called ANSI/SPARC Owee-level MW (data o
manage system) architecture (as. [Jardine 77) for a presoton and discussio of 0i
architecme).

This architecture has the property that vwrous diffeent xternal data mdie may be
simultaneously supported. Similarly, different internal dat models may be suppWed. Tim,

this architecture lends ielf to data.indepe ne .. the conceptual moel ls a Sed
mrfac bewen changeable applic progsms (Ie., exernal/concp mepplog ad

* changeableSW~ stora*gewrgnlan/accee priograms ("e. con-0cepIUAitra q "' pAlmpW

In summary, this the.le archilsoture Is shown In FIgure 2.1. 14gm, a usw oohee

.1 .. . .. ..



user Interfac, , user Interface

conceptual model

record managr

Internal model

Figure 2.1. Three-Level Architecture

is a collection of modules providing a single externiai/conceptuui mapping, and the record
manager is a collection of modules that define the conceptual model and Its mapping to
physical storage.

2.2. Problems of the Three-Level Architecture

T7he three-leel architecture seen to deal adequately with the problem of isolat
application programs fru storage structures and access strategies, providing one Is **Mg
to accept the essentially static nature of the conceptual moe.However, It provides no
such Isolation at the physical access; lee (wic could either be at the level of physical
storage devices. or at the level of virtual storage as seen through a host operating system).
Typically, the record maniager tias detailed knowledge of avdllble storage and INs

chrctrstc, in addition to Implementing concurrency control and recovery.
Apparently this has 'not been a significant problem in the pest, n far as system coc s
is concerned, since theroar reliable transaction p rcesig systems In ieisece. Howev
It ha probably contribted significantly to the development time for thses systems. idelly,
one would Wlie to take existing record management softwuus. or new softwere, and use It In a-

* system without regard to the underlying machine architecture. Alsno, ona might went to
chng reord management policies as system usage changes (as pert of sstm

mlNh io---- implemen a new record manager, or correct bugs in an *e"tn reom d
mmwager, w~thou regard to possible interactions with concurrency contro or recovery Owa
could cause these subsstm to bicomn incorrect.

Thes problemis of the Owre-leve sichilecture will become ever more slgnllom given Un
incesinly ofomplex tiuxiware provided by muitlP nceme disributed presse1
computier networks and memory hierarchies. In fact, slste correctnes cotld very well

become a signifcanit pro'blem

WAr.7
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exter~ model.

owe Interim*e, u.,mser interface

conceptual model

record manager

virtual Internal "oWeW

concurrency control, memory manager, recovery manager

physical Internal model

Figure 2.2. Four-Level Architecture

2.3. A Four-Level Architecture

Separecord- management desagn hto fmo levels -- the vkWir and ph-Voii lv-
results in a general architecture lia thW of Figure 2.2 Here, the pfyaca foweme aodel
reer to the hardware 11mel (possIbily Seen through a general-purpoe operalnl qu slmiad
the virtual Internal model refer to a dft a model based on a collection, of - I dft

.J biete and In which all details of cnurency, memory Moracse and Ism"er e
hidden.

The data ablectls supported at mhe vitud Intel *eve could bb of veryki 1om iv
depending an mhe diesi Some eimle i I order of 1, c ssleg coofmtf, UO
segments,. mod records (noeA Sedn 13.2). Fiferlng to Figm U* ft record magr IS
responsible for meapt the' snilis define by t cmncepl dmxla l - f - -t

objects, accessing an objec using only the ap irWin - do!ned- an tha do* fte sMI
manaer Is relpnbe I o mppok ths oibjet o oil* s1Ise'L ftOdilM
contral -i spsil for Fie!en ON d asoshino conlks 0ie Seedmnp 10, -00- ft
recoMVy CW 5 manage Is r1posil ft ~n e Oug f ftu Obbfe $1111 ORl Wgt MOM
memory to &%ow recoey I cam of Mihre.

ITe aatage of a ftw-b"s *Ardlwknr Such ns Wile IS golt 1.Ut~d*W*
Owies level archiletur meriloned eem th f,# t iovffpld b~o*-!-e'*- __g

OWW $Cn'mwgwml
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DISPLAY DISPLAY DISPLAY
II

use user user
interfac I1nefc 2 itrae,-... ec

record r d-

KEY DISK DISK TAPE TAPE

03 processor []J- miodule(s) message ilofc
O -process -,-- device Interface .procedure call interface

Figure 2.3. Centralized System

2.4. Example Systems

The four-level architecture can be mapped to a variety of architectures in a variety of ways.

Three examples wilt now be given.

2.4.1. A Centralized System

The four-level architecture can be used In a sOtraghtfowa way in a centralized setum, n

shown in Figure 2.3. No that In this m record mmgers can e cod, md ViM Se

record managers, memory manager, and rcoery manger can Wl* buffer Spam This

could Just as well be a gh coupled Mutipnoesoo System, that i, a 100pRsu m
swelm in wich am to shmre mrmwy is equally inexpesme for al* pnoo m.

2.4.2. A Personal Computer Network System

7 ~Om. po@@Mb n opping9 of fte four-leve architecture to a personal compulor natwr Is
Show In Figure 2.4. In Ofl spitem there ise a more complex mmory hierwahr. #e af a
numw of smal local mmnore, and a lr shard emory. One vay, t O mini
pionlem Is functionul diserausion. In t approech, acew to a pet~ w tmliet.
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DISPLAY DISPLAY DISPLAY

kI rfn I1refc 2

record record record
E ecr

in= I I I Am

PERSONAL PERSONAL PERSONAL

DISK DISK TAPS TAPS

KEY

03 rces rl U o- W- m .hu

Q process mum- evsc kflms - prModuain~ii

ftgure 2.4. Porwtomw~Cepuh Wws- OWGUM

o0 0ed w a mmms es . w #meis pbd* ON 119 so mas~ I n1116a
*1result is a in miof MW rnisj *WHOM Us 40 910udft fa ___ *119

- a gsbnmmor Sir - mosey WAAP0 me =wn# fwt
-F~V (awme o ow b ~ 00-V mw m- juv Now owa
Mme). One could Immoln Iisw mousmy memqom a mk6 W. go 6 owdMef A

omm, uam told 1te1-11iWF0 a dam~ 0800Mw we~ 60" allnsg m
An, allsalv Opp ,I b 01 disiio by i flfts,. Pu 004f 164 W*
mry, lowl sm omon muld be left ""I *Ak a a"P *010



DESIGN PRUNCIPL 17

DISPLAY DISPLAY DISPLAY

IntrfceI intserf ace2 [ neraj ".et

record record record

letc

lJoce s oal locdvaeItlfc poeur alInefc

Figur 2. 7 Mut*lrpoosoytmn

ag hrdreore h sm prah ol eaple oteconcurrency control o

varity o caes pcrlie cnurrecntrse muchemo re efcnt thn ompwe

distributed reore h aeapoc ol eapidt tconcurrency controls.r



18 DESIGN OF CONCURRENCY CONTROLS FOR TRANsAcION Poc N SYSTES

2.4.3. A Multi-Microprocessor System

A system using the designs of Chapters 3-6 was Implemented on CmO, a multi.
microprocessor system (see Chapter 7). A proposed decomposition for multi-micioprocessor
transaction processing systems Is shown in Figure 2.5. This was the decomposition used in
the implementation, except that the user interfaces were combined In a single master
process that simulated the transactions produced by a number of users, and an extremely
simple recovery man-ger was implemented as part of the global memory manager. The
decomposition of Figure 2.5 Is essentially the decomposition of Figure 2.4; however,
address-space limitations have resulted in some further decomposition, as shown.

In the case that the concurrency control or global memory manager become system
bottlenecks, it is possible to distribute these among several processors without sacrificing
functional decomposition by partitioning the set of shared data objects (see Sections 4.6 and
6.5).

2.5. Serializability and Conflicts

In this final section the problem of concurrency control design is addressed. The goal here
is to obtain a formal characterization of the kinds of Interactions under concurrency that can
lead to loss of consistency, assuming only that each transaction individually preserves
consistency.

Let the following constants and sets be given:

k, the number of transactions In the system;
0, the set of object los;
D, the set of object states (all possible data parts of an object);
T, the set of transaction states, including, In particular, a halting sate;
R, W, read and write symbols (arbitrary, different constants).

First, versions of objects and database states will be defined.

Definition. A version is a triple <o, v,, where o E , v is an integer, 0 O:5 v : k,
and d E D. In the triple <o, v, d>, o, v, and d are called the object ID, version
number, and data, respectively. A database state is a set of versions satsying:

(1) for every o C 0, the is a version with a zero version number, (o, 0, d);

(2) for all object lOs o and version numbers v, thee Is at most one vesln
with ID o and version number v.

Next, transaction ste v and transactions are defined.

Definition. A transaction step is a sextuple (I, J, C, P, R, W>, where I and j we
intgews, 1 :i k, and C, P. R, and W are any funtimn

C. T - {, W),



DEsMON PRI4CIPME 19

P T 0,
R.,DxT- T, and

W: T-DxT.

Here, I Is called the transaction number, J Is called the sequence number, and C, P.
R, and IN are called the condlional function, parameter function, read function, and
write function, repciey A transaction is a finite sequence of traneaction steps,
all with the same transaction number, and with unique, increasing sequenc
numbems

In formalizing the notion of transaction systems, it is convenient to use a variable state
vector (s, tj t2, **3g .. , wheoe s is a database st and each t1 Is a trnsation stat.
Given the current value of the state vector and a transaction step QI, J, C. P. R, W%, a new
value of the state vector Is produced as follows. Frst if tj is the halting state, the state
vector is unchanged. Otherwise, C is applied to tr The result of C determines, which of the
following two mase apply.

Read cmg: C(t,) = R. In this case, R Is then applied to <d, t,>, where d Is the data
of that version with object 10 PNt1 , and with the greatest version number less than
or equad to i. The result of R is a transaction state, which is the new value of t, In
the state vector, the rest of the state vector is unchanged.

Write mae: C(t1) - W. In this case, IN Is then applied to ti, g9" a data value d
and a transaction state t. The new value of the state vector Is derived by. (1)
setting t, to t; (2) modifying .9, first by removing the version with objec 1D P(t1) and
version number I from a If there Is such a version, and then by ading -

teversion <P(t), i, d> to s; and (3) leaving fth rest of the state vector unchanged.

Next, aerial and concurrent transaction system are defined.

Definition. A serial transaction system is any sequence of transaction soep
formed by appe~adng kc transactions, with transaction numbers 1, 2,3, ... , kc, In this
order. A concurrent transaction system Is any sequence of transactionsep
formed by permuting the steps of a serial transaction system subject to t
constraint that the sequence numbers for each transaction remain incresing for
theat scton

A serial or concurrent transaction system can be applied to an initial valu at the sae
vector by apiplying each step of the system In sequence, yielding a MWna value of ftthe-
vector. A transaction history of this proem is a sequence, Initially empty, formed by
appending a quadruple for each step In the transaction systm, with the exception of steps
for transactions in the halting state. This takes place as follows. Let the curreant 0 rmeft
step be QI, J, C. P, R, 4) . NIf tIs the haltn stale, the transaction history tounligd

ff CP R) W miPt 1 0.* append 411. it J. 0> to h 6"vtsy
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If C(I,) .W and Pr) = o, append MW, 1, J, o> to the history.

Now, consider the problem of preserving consistency. First, If each transection individlually
preserves consistency, a serial transaction system clearly preserves consistency. Therefore,
Nf a concurrentl transaction system were somehow equivalent to a aerial transaction system,
i.e. serialtzable, It too would preserve consistency. In fact, It has been shown in [Kung and
Papadimltiou 79) tha this is the weakest such condition for a concurrent transaction system
to preserve consistency Nf the consistency properties are not known (and of course they awe
not known In an application-independent concurrency control). This Weads to the following
definlon.

Deflntlon. A concurrent transaction system is serlizrablo (in the order 1, 2,... k)
If, when applied to any initial value of the state vector, the final value Is Identical to
the final value produced by applying the seril transaction system from wh~ the
concurrent transaction system was formed. A transaction history is aerlailable (in
the order 1, 2, ..., k) If all concurrent transection systems with this history ae
serializable.

This definition Is somewhat different than that usually appearing in the literature, In that the
serrializabllty order Is assumed to be given. The question of whether this lack of generality
in the definition above leads to any lack of generaity In the concurrency control Is taken up
in Chapter 4 (the answer seem to be that It does no).

Now, conflicts are defined.

Definition. Give a transaction history containing (R, 1, J, o>, let <W. ir,j' o> be
that quadruple In the history with mximal P' and f, subject to? P I5, ii such a
quadruple exists. Then transactions / and P' conflict If P' <i and <R, I,1. J, > preceds,
<W, F, f , o> in the transaction history.

The result of this section is the following theorem.

Conflict Theorem. Assume that 0 lies more than one element and that T lhes
more than one non-halling satsm. Then a transaction history Is seraliabl If and
only Nf no two transactions conflict in the transection history.

Proof.

(4-) Given a concurrent transaction sysem and an MW~ia value of t1he state vector, no% tha
(1) the state vector transition produced by a transaction step <1, J, C, P, R, W) dependsA only
on the current value of t, -and, in the reed case, that previos transcto stp
QI,jf', C', P', R', W') with nmsxmal?,P, P : , that was awrte toobetPfa No
exAls; and (2) the only transaction slat In the slate vector changd by thi 110111110 fl tp
is t/. Therefore. If thee me no conflicte in fth truaetlen histoy, all stat voolor OaUNUM
in the concurrentl transaction system will be the same, a the slat vector nltsa - 11Us1 N
serial transactin syftro m which the conmmrent Vuiesedn su wn, si Iu
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(-) Given a transaction history with a conflict, a concurrent transection system and an

initial vajue of the state vector will be found such that the final value of the 91at0 vector Is

not the same as the final value produced by the coresponding serial t System.
Since there is a conflict, the transaction history is of the form:

... (R, i, J, o> ... (W, rJo> ... (P' <O.

LetD - {xy, ... )andT - (ha, a,b,...). Ohasatleastoneelement(namelyo);ItO 

(o, p, q, ...). Let the initial state vector be

((<o,O,x),(p,O,x,(q,O,x>, ... ,a,a,a,..., ,

that is, every object has one version with version number 0 and with data x, and every

transaction is in state a. Let there be one transaction step in the concurrent transaction

system for every quadruple in the transaction history, defining the conditional and parameter

functions of each step so as to agree with the history. Now define every write step In the

concurrent transaction system, except for the one corresponding to <W, ir, f', o> above, as a

write with data x and a transition to the current transeaction state. Define the remaining write

step as a write with data y and a transition to the current transaction state. Finally, define

every read step as a transition to the current transaction state, except for the reed step

corresponding to <R, i, j, o> above; define the read function R of this read step a

R(xa) - a, R(yA) a b. This concurrent transaction sywstem is not serIalizable, since the final

value of t, is a, but serially the final value is b.U

This simple and exact chMacteization of serialzable transaction histories is pasible

primai due to the Inclusion of an explicit total ordering of transactions in the definition of

earalizability, and to *e multi-version definition of objects. When these are omitted the

characterization of serializable histories becomes, by comparison, highly complex -- in fact,
the problem of determining If a transaction history is serializable in any order, even under a

much simpler data model, he been shown to be NP-complete (se (Papedimltrou TOD.

Transaction histories are useful for concurrency control desg since transaction isties

formalize the information available to an application-independent concurrency control. 8inoe

te concurrency control is application-lindpendent, It must not allow any transaction

histories to develop that cou have been produced by some non-serialiable concurrent

transaction system -- this was the motive for the definition of seritaable transaction hsWtrie

given above. Finally, the conflict theorem provides a simple way to test for non-srializable

transaction histories. For the sstem descrbed here, the tet is actually somewhat simper

than might be expected from the above, since for each transaction, all reed precM all
write (to shared objects), and there is at moat one write to a shared objec. The conict

theore will be applied in Chapter 4.
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3. System Overview
In Chapters 4, 5. and 6, designs for the concurrency control and global memory manager
subsystems of the four-level architecture will be developed. This chapter provides an
overview of a complete system using this architecture. Global design decisions, such as
communication protocols between subsystems, are discussed. It is assumed that the system
Is distributed, so that the memory manager has been decomposed Into local and global
memory managers, as described In Chapter 2. Although this overall design was developed in
the course of the Cm" Implementation (Chapter 7), it should apply to any transaction
processing system using the four-level architecture. The following abbreviations will be
used: Rcd . record manager, LMM . local memory manager, GUM . global memory
manager, CC - concurrency control, RcvM . recovery mnager.

3.1. Communication between Subsystems

It is convenient to have communication between LMUMs and the GMM, LMM. and the CC,
and between the GMM and the RcvM take place via messages.. this case no other
synchronization will prove necessary. The asumptions here are that there is a message
buffer associated with each process; that sending a message to a process causes the
message to be placed at the end of the message buffer for that process if possbl
otherwise the sending process waits until it is possible to do so, with queueing of walting
procesw; and that receiving a message removes the first message from the message buffr
if there is one, otherwise the receiving process waits until there is a message to remove.

Each RcdM and LMM re part of the same process, and they sae a commona
space. Communication between the Rcdls and LMMs can take place by procedure CaL

3.2. Data Objects

At the virtual Internal level the database consists of a collection of data objects (when the
context is clear, simply obect), each identified by a unique ID. A data object will be the unit
of data transfer between local memories and shared memory.

For the Cm* systwem, pages (units of untyped slorage of fixed sie) were chosen e the dat
obnects of the virtual internal level primarily for simplicity. There are only three operation
defnd on a page-. reed, write, and dekt .- in addition to the operation of creang a new
page. A more advanced systWm could provide more complex objiect, such semen
(units of untyped storage of var le als) and records (units of structkrm on w - o
Appendix 1). One advantaege of only using pages (or sental is go erdt noe
com, nm t is made to any particular data mrel. On e Ithr ad, poding remo
objects at the virtual Inten level could be far more efclent, and is alsproch tod
coainly be taken if record aces hardware, such a iogc.cper-track dM wr Albl.

It is the responsibility of the RcdM to map the entities defined by the conceptual die model
ontd f w In the ca ddo o f
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mom type, this will be trivial if the conceptual enite we rmords of the sm ype. The
mapping becomes more complex as the difference betwee the conceptual modal and the
virtual Internal model grow. In the cm that data objects are pages and conceptual ildes

re records, various mappings can be achieved by organizing the database as a direcled
graph of pages, with certain root pages that are never created or deled - access to a
recod takes place by first accessing a root page, then following pointes to a page (or
pages) containing the desired record. A simple example of this kind of mapin Is to link a
number of pages together linearly so as to form a sequential file; for a much more complex
example, sm Appendix I.

3.3. Read and Write Phases

As noted in Chapter 1, in general, any transaction may be aborted. Therefore, In order to
avoid unnecessary transfer of data oblects, all mites to the shared databae wil be buffered
until the end of the transaction. This results In a read phase, In which the transaction is

executed but does not write to the shared databa, and then if the ansaction is not
aborted, a write phase in which all modified data obiect ae transferred to the shared

databem.

Some other reasons for choosing this approach are (1) it simplifies the GMA design; (2) the
LMM cannot determine if a transaction will later modify an already modified olect, without
adding complexity to the RcdM/LMM inteface; and (3) the object versions are not known
until the end of the read.phe (see the next section).

3.4. Transaction Numbering and *Versions

In Chapter 4, it will be seen that the concurrency control will guarantee that the system
transaction history is always serializable. Furthermore, the serializabilty order, that is the
transacton numbering, will be made explicit. Thus, the datbae can be thought of a a
sequence of versions Do, D1, D2, .... where DO 18 the initial datbe", and D, is the dataMse
alter sequential execution of the transactions numbered 1, 2, 3, .... i, in this order. Assuming
transactions are executed sequentially, If each transaction actually wrote a new version D1 of
the entire database, this new version would possibly be Inconsistent until the transact
completed. But If version D,., were still available, queries t began befo the transacuion
numbered i had completd could still "see" a consistent databse by accessing this older
version. Under concurrency, this approach can be simulated by having each Vaaclion
write new versions only of the objects it modifies, This scheme resuts in the database
consisting of a collection of objects of one or more versions each, where the veasm number
of an object is the same as the transaction nunmber of the transaction that wrote the objest.

This muWi-version object schome will be used here. This was the motve for deiAni

versions of objects in the earlier formal developmnt of erielizabillty. The details of
providIng queris with a consistent view of the database withou CC support end of qa~eg
collecg old versions, re given In Chapter 6, Transctions are quny numberd at

;: ,I . .. . . . .. +f '.77--
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successful read.phase completions the reasons for this ae discussed In Chopter 4

One objection sometimes raised to multl.version object schemes is that a large tansactian
that modifies the entire databae, for example for reorganization purposes, will crests a new
version of every abject, thus doubling the needed storage. However, in ingle-verslon

schemes, how is recovery supported In this case? That is, what If as a result of hardware
failure, software errors, or human mistakes, the database is "destroyed" by this irge
tramaction? This is a real possibility, and one would hope that even In single-verslon oject

based systems an earlier version of the entire database were saved somewhere in this

eventuality. In fact, this suggests the following solution for multl.verion object based
systems: as the large transaction runs, transfer the earlier version of each modified object to

tape or other tertiary memory, and reclaim the secondary memory space. Note that the
necesMry mechanim could already be available as an automatic archival subsystem, or as

part of the recovery subsyslem.

3.5. Local Memory Managers

The LMM will have several responsibilities: managing a local cache of data objects,
supporting the write-phase, hiding the GMM and CC from the RcdM, and providing a simple

interface between the CC and the GMM. In the cue that a local disk is available, the LMM
could possibly participate with the RcdM in some recovery protocols, but this wil not be

consired here

3.5.1. Cache Management

In order to avoid unnecessary transfer of data objects, the LMM will maintain copies of some
of the objects that hve previously been read (by any ocl transaction or query). Every read

request to the 3MM includes the version number of a local copy, if such xts. No object
tranemr is necessary if the local copy is the "corre" version (as determined by the GIM ..
we Chapter 6).
I a particular transaction or query has already red an object, and the Is still a copy, then
no GMM communication is necessary at all. Whether or not an object has previously been

read can be determined by marking the local copy.

in the computer newor application (Section 2.4.2), in which a local disk is aWdab to tNs
LMM. at each node in the network that part of the dambase that is mast oftn used at reat
node will migrate to that node. in particular, one would expect at isst the upper Ioeis of
the daabse access structure (directories and indexes) to be Pseisnt each node, remdng
in 1w fewer netwok objec transfers than if coching were not used.

3.5.2. Wrkhtose Support

As discussed abov-, en overd design decision is to write new versions of objes to ft
inwed dabses only If It can be deemined tat the transaction th genemem te new
versions wl not be abod, which lads to te red-phase / wrItephWWe WON desit

I I.

* 47-7-7-7. 1
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the course of the tranaction as sen by the RcdM (i.e. between Tbegin and Tend.. s

below), no writes to shared memory occur, instead, a local copy Is modified. Then, after the

RcdM has caged Tend, If the transaction is successful, the LMM wre all now versions to

shared memory. Thus, the LMM must maintain copies of all objects written, creted or

deleted, In order to perform the write-phase. In the case that there Is not enough local

memory for a particular transaction, it Is easy to extend the GMM deign presented here s

that the LMM can request extra shared memory for Its private use. In a cenralized sytm

this latter technique would always be used since the "LMM" would not have any local

memory to manage.

Note: a deleted object is treated here as a now version of an object, i.e. in a fashion Identical

to a written object, primarily for simplicity.

3.5.3. Hiding Versions and Concurrency from the RcdM

Record management Woblms can be complex, and the complexity could become
unmanageable if the existence of multi-version objects, read-phases and write-phases and

concurrency control had to be dealt with at the same level. It is the responsibility of the

LMM to hide all of this from the RcdM, thus completing with the CC, GUM, and RcvM the

support of a virtual internal model. From the point of view of the RcdM, the database

consists of a collection of objects, of one version each, to which it has eclusive socees.

The UMM can hide all of this from the RcdM by mapping RcdM object accesses to local

copies (retrieving a shared copy'If necessary), by sending the necessary Information to the

GMM to complete or abort a trsmaction, and by asnding the CC the necessary nformtlon

to detect conflicts.

3.5.4. GMM / CC Interface

When a transaction successfully completes, the CC will retum a transaction number, which

is just Ihe current value of the transaction number counter (see Chapter 4). It is the

responsib ity of the lM to supply the GMM with this number for version number ue during
the wrile-phase.

3.6. Summary of Subsystems and Interfaces

The followirg Is a summary of the functions and helace of the Various sir lms.

3.5.1. RECORD MANAGER

unls. This aub1esm defime the conceptual modl and Its mems to the dat

ofbects of the virtual i era Wev. This Includes Oe functioM of deiit-on of reseed
uctunm mapping of srecord, l.ons ec., onto objects; c reati and mainutos o

indexes; effcent ineartion, d-elen, updlte, and retle of renrd e .

lnterfee. Varies, depnding on Ie concepka modal pooldsd by e RS M.

'MI_ K !
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3.6.2. LOCAL MEMORY MANAGER

Functions. Cache management buffering unti the aid of a transaction objects wulIftn
craeor delete; doing this In such a fashion thW the facts tha thee -we multi1ple

versione of objects and tha objects are ared is Inviaible, to the record manager provide a
saA~ more controle Interface between the RccdM. GMM, and CC.

Interfacie.
Qbegin - begin a query. Invokes 110Qbegin.
Qread - make an object addressable. May Invoke Mread, may cache object In loca

memory.
QreIeas, - ak an object non-addressable (free local memnory for ajc)
Oenci end a query. Invokes Waend.
Tbegin .begin a transaction. Invokes Cbegln and Mine gin.
Tread - make an object read addressable. May Invoke Creed or Uread, may cache

object in local memory.
Tcreate - create an object. Invokes Mcreate, allocates local mnenm.
Twrte - make an object read/write addressable. May invoke LUread, Cwre or Munow,

allocates local memory If necessary.
Thelase .make an object non-addressable (may tree local memtory fo objeo.
Tde/etc . delet an object. Invokes LMnew, allocats local memory V neceesi
Tabor. abort a transaction. Invokes Cabort and Mabo at.
Tend - compleate reed-phs of a transaction. Invokes Cvafid, Ithen If succeii Mowes

writes new versions to shared memory* final Wand and Cend; odw who 'wokes,
Mabo at.

Tnarne -gerat. a unique. name. Invokes UIname.

3 3.6.3. CONCURRENCY CONTROL

Functions. Detect and resolve poesiblet conflicts so as to guwutrtesdllt
transaction numbering. Conflicts are detected by keeping track. for each transaction clu
of objects 0136) reed and writen; confits are resolved by having transactios wo or
daor** transections.

Interf ac.
Cbe gin .begin a transaction.
Cabort abort a transaction.
Creed. Cwrite - requst for acces to an object. Check for conflicts -nretuara 08A, or

hae transaction walL
Ci'~d. ineia and of read-phm for transaction. Final co'Not shik- hm

decision or have transaction, walL
Cond. lidicate end of wr#&twmhee

~~-u I.,--'
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Func~ons. UMl Wigl-g obect. V, mrln i > physic address mapplng supOplynMec
quey with a cne 1nt a-apeo oW atSW dtabase, creation of now objects; 9~eg
collcin of old and d~te oblsclo generation of unique nams.

AfTb*9Kn DdQb@9 - begin a tWionetm quwy.
MTend Uf~end end a honeton,- query.
Metbort - abort a 6 rlsactlon
Ufread - re an objct Ind orrect verulan and return verionu nuniber and address

in -hred mesmy.
Ateew - allocsie space for now version of an object (includingp deFetM veulonw).
Akreet - crate a new object (allocate apace armd retur 1D).
AfWMWt - write an obec (Including "d~lt version "). return addres of shared memor y

allcae p-14in Uneww or AMtoafe.
Unm generat mid return a unique nens

3.8.5. RECOVERY MANAGER

Functions. During noral operdao n: write each new version (say), new values, of the write-
su compimon coufter (see Chapte 6), othe information useful for recovery from failures
an highly selse Iimpemsalve. wrlls-onca nmediA During recovery fin old ves lin in such
a lio~ s so Io allow recovery of a previous conalestent sli.

tMe. It svond ollen be possible fo One GOW to recover from non-disk systemn falures -- In
ge nral Vilt GUA-onl recovery will be possible If the failure did not cause garbag to be
watien en VSo dik In emanv eress'. G~rag can oftn be detocte by redundancy
Iehldpus 04. checksmos. In Vie uimpWea come. Vie RcvM could be used Periodically in
backup enotr tontent- of -yem dials, wili no transactions allowed during Ofle period.
For aiaple, in Vie Cm r~m dsw d In Chapte 7, a very simple AcvM was mrse a
Part of Vie GUM ViM saved VieO GUMMjc ID, version a> address impp i on requst,
and Soe databse Itsel could be backted up If desed by gol trnserw to another machins. A
somwh m11 ore com iplsuuse would be to periodically backup "ospshofts of Vetobse
conI- dorin Vie entire procedure s one very lae query .- trn as would mS be
allwed In tis cms. It le also possible to do Vhie in a mush more, dynamc wa, and is dow

is ~w f o* ~ a t. s pedwd, ndby softg OWN -now value either of Ie walls

Owe completion IM or No5 vole~phae opletion amsuntr (we Chapter 6). The ,cost of
tisetter approahI an on pe. p obflem, but would perhaps proveusfulh gieng

* Viet CC, twer als. Mm to be Man RsvM poldee In any Gon, toe pinbleps f# resour is
an iniporkent oae, butt Is beycod10 the o f 60ci m Viethss oh design &Wd wse of VIea enr

manger w* not be dealt wit In any me d" h"ts
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4. A General Paradigm for Concurrency Controls

In this chapter a general design paradigm for concurrency controls will b. prsentd. Frst,
It is necessary to discuss in more detail the assumptions made regarding the fashion In
which the CC controls transactions.

4.1. Controlling Transactions

As a transaction runs, on the first Tread for a given object, the LMM will send the CC a

Creed message for the object, and wait for a reply. This message is interpreted as a request
for read access to the objecL The CC must at this point decide whether to grant the
transaction read access immediately, in which case a positive reply is sent, to abort the
transaction, in which case a negative reply is sent, or to postpone the decision, In which

case a reply, perhaps positive, perhaps negative, will be sent at some later time.

Similarly, on the first Twrlte for a given object, the LMM will send the CC a Cwrie mesage

for the object, and wait for a reply. This Cwrite message is Interpretsd as a request for
read/write access to the object. Again, the CC replies with it decision, or postpones its

decision.

Although the CC can abort a transaction by replying negatively to a request, It may alsm be

the case that the CC will decide to abort a transaction at a point where the transaction is not
waiting for a mssage from the CC. For example, the CC may decide to abort one

transaction based on a request from another transaction. Ifit i possible to Interrupt the

transaction, the abort may be handled in this fashion. Timing problems can be handLd by
requiring the LMM to send an ackoledgement message to the CC, and by the CC marking

the transaction as aborted, Ignoring all requests from that transaction until the
ackoe ent is received. Atenav, the CC can mark the transaction as abortd,

and send a negative reply on the next request from the transaction (for simpicity, the CC
algorithms of Appendix Ill use this tchnique). In any cue, the transaction is said to be
aborted whenever the CC ither replies negatively, interrupls the transaction, or marks the
transction as aborted, whichever occurs firs.

If a transaction already has rad or med/write access to some oblect, a request for the
some kind of access to the sm object is handled by immediatly returning a posv reply
(unless the trasactin is AM).

When a transectlon "ends" (ends from the point of view of the RcdM), the LMM will send the

CC a Cvafk mssag, and waft for a reply. Prior to this mesage, a trnection that has not
been aorsd is sold to be activ. This messe is in sence a request to the 0C for inal
approval, or validation, of the Wans on. As discussed in Chatr 3, an ovra desin
decision lsend the OW41 new ver im o, I the tansacton th go aneraled to few
mions can be guwsatn no to be aborts Since the MM wil begin the wrllp-phe at
this point 11a poele re plsthe dslin ofthe ist in theme Mlnl. WhenWNtIl
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the CC does return a positive reply, the transaction is said to be validated. Included with the
reply is a transaction number, which the LMM will use as a version number for al obec

written in the write-phase, end which the GMM will eventually use In WPCL processing (me

Chpater 6). Aborted transactions are not numbered. A transaction number is generated
simply by returning the value of an integer transaction number counter, for brevity named

TNC, and then incrementing the counter. Let TNC be initially one.

At any point in time them will be a validated transaction history consisting of all reads and
writes of validated transactions with transaction numbers 1, 2, 3, .... TNC-1. The function of
the CC is to control transactions so as to guarantee that the validated transaction history is
always serializable. By the conflict theorem (se Section 2.5), this means that the validated

transaction history must be kept conflict-free. There are two methods that can be used for

guaranteeing this. First, transactions can be aborted -- an aborted transaction will not be
part of the validated transaction history. For example, let a be a transaction in the validated
transaction history: a correct concurrency control will In the future abort any (not yet
validated) transaction b that conflicts with a (even though b has not yet been assigned a
transaction number, it Is known that if it ever is numbered, the transaction number of a will

be less than the transaction number of b, so it makes sense to speak of a conflict between a
and b). The reason for this is that If b conflicts with a, one of the two must be aborted ..
however, a has already been given final approval, so b must be aborted. Second, in an

attempt to avoid aborting transactions, transactions can be made to wit for reed or

reed/write access. The idea is to rearrange reads and writes by postponing some of then
so that the validated trsnsactn history Is kept conflict-free.

Suppose now that a Cvalid message Is received from some transaction (that is not aborted).

This transaction does not conflict with any previously validated transaction (or it would be
aborted). Now can the CC handle this request? As far as consistency of the database is

concerned, the transaction con be validated Immediately. Another possibility is for the CC to
postpone the decision. At first this might seem pointless if it is possible to validate the

trnsaction, why not do so immedistely? The reason is that cas may aise In which a
transaction, If validated, causes a conflict with an active transaction, which means that the

activ transaction must then be aborted. However, If the validation of the transection were

postponed, it might be possible to eventually validate both transactions. A transection for
which validation has been postponed is said to be pending.

Finally, after a validated transaction completes its write-phase, the LMM will send the CC a

Cmnd message. Such a transaction is then said to be completed. No decision is necessary

at this point for the transaction that sent the mesage, snce the final decision was made
earlier when the transaction was validated - rather, the purpose of this msage is to Inform

the CC that the new versions written by the transaction may now be reed by olu

transactions. In summary, the st ransitions of a Oaction we shown In FRm 4.1.
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active

pending

Figure 4. 1. Transaction State Transitions

4.2. Correctness of the Concurrency Control

In Section 2.5, conflicts were defined In tems of transaction histories, and transaction
histories were defined as a sequence of quadruples of the form <R, . 1. J.o> or (W. I 1 J, 
wher i is a transaction number, j Is a seqence number, sand o Is an obec 1D. However,
this formalism is unsuitable for the present pUrposes, since although the CC has InforimaIon
about the reads, sand writes of transction it has no information about thei exact
intereavng. For example, with respect to wres fth CC *knows" only that for any
transaction, &I wrttes; take Place after validation and belor completion. MAo. the
transaction number of a transaction is not known until validaton, In order to des"n a
correct CC, a formalism describing the actions of the CC Is nwesry. With t In mind a
CC history is defined nas sequence of tuples of ft following forms, wherea is a transaction
ID and p Is an obec ID:

<R, s, p%, meaning a Is granted read access to p,
M., a, p>. meaning, aIs granted writ access to p;

* <V, a0, meaning a Is validated;
(A, a>, meaning a is abortled;
(C, a>, meaning the completion mesage from a Isis rcelvd

The following predicates will be usefu.

R(a, p): (11, a, p> appeas In the CC tistorf,

W(a, p): (W, a, p> appeas In the CC history,-

*J- .I-



A G*EERL PARADIGM FOR CONCURRENCY CONTROLS 31

Y~a): <Va appears In the CC history.

The CC history of an executing CC i maintained by appe~dng the appropiate tuple as each
of the above actions is taken by the CC. This is straightforward except for(<W, a. p> when
a transaction requests read/writ access via Cwrite and a positive reply Is returned,
if R(a, p), then only(<W, a,.p> Is appended; otherwise, <R, a, p> and <W, a, p> are both
appended. With this notation, a correct CC history can be defined as follows.

Correctness. The CC history is correct If for all pairs of transaction ID9 a and b In
the history such that R(a, p) and W(b, p), one of the following cases holds:

C1. Not V(s) or not V(b);

C2. V(s) and V(b), and <V, a> precedes <V, b0;

C3. V(s) and V(b), <V, b0 precedes <V, a>, and (C, b> precedes (R, a, p>.

A correct CC is a CC for which the CC history is kept always correct This correctness
criterion is a straightforward application of the conflict theorem. In case Cl, there is
currently no conflict between a and b, since at least one of them has no writes to the current
point. Next, If the transaction number of a Is less than the transaction number of b, no
conflictis posble betweenaandb wth respect to aread of aand awrite of bifallreads
of atake place before any writesof b, asis the cagen C2. Finally, if the transaction
number of b is lees than that of a, cas C3 requires that a not be granted read access to ft
abject In question until It can be guaranteed that b has writn fth new version of the object

The correctness criterion Is violated only in the case that for some transactions a and b,
* R(a. p), W(b, p), V(a), V(b), <V, b> precedes W. a>, and (R, a, p> precedes (C, b> (see

Figure 4.2). In such a case a conflict is possible in the validated transaction history:
transaction amay have read the most recent version of the object with 10 p before te new
version created by transaction b had been transferred. Thus, the validated transcton
history is serlsal If and only If It is confllct-free, and It can be guaranteed to be conflct-
fre If and only if the CC history satfies the above correctnms criterion .

4.3. The Paradigm

The correctniess criterion defines correct CC histories In a static way. given a CC history, It
can be determined if the CC history Is correct. The problem now is to design the CC so that
the CC history Is kept always correct.

The Independence of the CC from other modules and from applications manseV thVe CC
can make no predictions about the future, accese of transactions. In fact as explied in
Section 1.2, In most cases such predictions are Impossible. Therefore, cn -dilsas psedhey1-I
leading to a violation of the correctness criterion must be detected drmamicaly base n
incoing access requests In the absence of much conditions, access request wE ~l
be grnte. That Is, the CC wrn abort tranasctions, or have them weit based only on ourrsw
oondlllons that could peaMWl Aeed to vlotefone of the correctness ardlodo.
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<W,b,p>

<R,a,p> (V,b)

<V, a> <C, b>

4 .. prec In time

Figure 4.2. Only Violation of Correctness Criterion

The only condition that could possibly led to a violation of the correctness criterion is that
R(a, p) and W(b, p) for some transactions a and b. This condition is called a possible

,conflict, and can be detected by maintaining for each object ID p a read set, the set of

transactions a for which R(a, p), and a write set, the set of trnsactions a for which W(a, p).

Empty read or write sets need not be maintained; also, these sets need not be maintained for

aborted transactions (due to Cl). It will also be seen that they need not be maintained for

completed transactions (this is due to the fact that transactions are numbered in validation

order - see Section 4.5 below).

The paradigm will be described by listing various options for handling access and validation

requests. When R(a, p) and W(b, p) is detected for some transactions a and b, both active

or pending, it is assumed that the CC records this fact for later reference. The aftmative is

to possibly (depending on the options selected) later check various read and write set for

intersection, which may become excessively time-consunng for a large number of
transactions or for large read and write sets When R(s, p) and W(b, p), a and b active or
pending, this relatim between a and b is written as a - b.

The meaning of the relation a - b is that in order to validate both a and b, a mus be

validated before b (this is from C2 -. note that C3 does not apply since b is not compleled).

Depending on the options slected, It may arise that a -.* b and b -. a, in which case oly

one of the two transactions can be validated. Similarly, If a - b, b -. o, and c - , only

two of the three transactions can be validated. In an attempt to validate both a and b

whe aa- b but not b-*a, and also in an attempt to avoid cyclic --* cond Mnssuch

as a - b and b -o a, an access or validation request may be postoned wtl one or moe
events have occurred. This Is called scheduling. When the evert or em have occurred,

the access or validation request is manalyzed as f newly arrved. It is alsued t0 the
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goal of scheduling Is to avoid aborting transactions. Therefore, from tde correctness
criterion, there awe two types of events that can be used i schieduling: the validation of a
transaction (C2). and the completion of a transaction (C3). The following notation will be
used for scheduling.

an v b: a positive reply to the current access or validation request of transaction
b will not be sent until transaction a Is aborted or validated (transaction
b may be aborted before then);

a =6Cb: a positv reply to the current access request of transaction b will not be
sent until transaction a Is aborted or completed (trwtsaction b may be
aborted before then).

When a transaction requests access to an object p, it may be desirable for the CC to base
its decision on the processing of this request not only on those transactions a for which R(a,
p) or W(a, p), but also on those transactions for which acces to p has been postponed
(e.g., in order to queue requests). If a read or write request from transaction a for object p
has been postponed, this Is written as RP(s, p) or WP(a, p), respectively.

The paradigm follows. The generality of the paradigm Is considered i Section 4.5.

Read request. Transaction a requests read access to p, no current read acess.

RI (aborted and completed transactions). Any aborted transaction can
be ignored by C1, and any completed transaction can be ignored by C1 (0f
a is neow validated) or C3 (if a Is later validated).

R2 (postpone). For each active, pending, or validated transactiont b with
W(b, p) or WP(b, p) (WP(b, p) is possible orgy for b active), do one oftOw

following.

R2.1 (skip). Skip b I this sdep.

R2.2 (abort). Abort b (applicable only If b is not validated).

R2.3 ( moc ). Schedule b mo a (thereby avoldlnp whoring a,
abortin b, or a -o b -- se R3 and Rit below).

If R2.3 was selected for any b. the access requsatl has bee ow mned.e@d
the CC history remais cort by C1. Later, Soe access request will be re-
processed; for now. terinate.

R3 (abort). It is assumed now tha the acceoss request will not be
posponed. If thee is any v Iae Onuietlin b with W(b, p), neihe CS

*nor C3 caneover be truefora od b fte as request Isnow ginled
Furthermore, althugh it doss i no M fte~ ane sree crilsrleR It a is
grante read acces no%, It Easy reed W deflm t 5 sce wo
varia of p w mbyb my ay nbe udbya. Thsresm VtwoIsri
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any validated transaction b with W(b, p), since a can never be validated. a
should be aborted: abort a and terminate Otherwise, if there are any active
or pending transactions with W(b, p) or WP(b, p), opftnally abort a, and

terminate.

R4 (grant). For each active or pending ransaction b with W(b, p),
record a --P b. Then, grant a reed access, and terminate.

Write request. Transaction a requests write access to p, no current write access.

Wl (aborted and completed transactions). Any aborted transaction can

be ignored by C1, and any validated or completed transaction can be

ignored by C1 (if a is never validated) or C2 (if a is later validated).

W2 (postpone). For each active or pending transaction b with R(b, p) or
RP(b, p) (RP(b, p) is possible only for b active), do one of the following.

W2.1 (skip). Skip b In this step.

W2.2 (abort). Abort b.

W2.3 ( mov ). Schedule b 6v a -- in this option, a waits for the
validation of b at the current point, rather than possibly waiting at the
validation point in V1.3 below.

If W2.3 was selected for any b, the access request has been postponed,

and the CC history remains correct by C1. Later, the access request will be

re-processed; for now, termirae.

W3 (abort). If there are any active or pending transactions b for which
R(b, p) or RP(b, p), optionally abort a, and terminate.

W4 (grant). For each active or pending transaction b with R(b, p),

record b -. a. Then, grant a read access, and terminate.

Note that the write paradigm can be obtained from the read paradigm by interchanin R

and W, -o and *,. by veraing --&, by reactng "cormlaed" with "vldad or
completed" in RI, and by remnoving the now inapplicable staMment thM a be aborte l If ther
are any validated conflicting transactions, in R3.

Read/write request. Transaction a qu reead/write am to p, no cunit

In the processing of this request the set of possibly conflicting trnsalom

are all those transactions b with W(b, p), WP(b, ), R(b, p), or MW 0.

Again, any of thee may optionally be aborted; a my opio -* be
postpond; a may optionafly be Aoted; or a may be girned eo/Wr
access. In the cme that a Is postponed, m c schmdUl9 not be uMd fr

any transaction b with W(b, p) or WP(b, p), aNd -oir altie*lA 4w ,MV
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A o n b with R(b, p) or RP(b, p) (thure Is no harm In using both "p
of scheduling with rmpect to the same transaction .- in such a case nv is
simply superfluous). As In a request for read access, If a is not postponed

W thee is a validatd transaction b with W(O, p), & should be iold.
Finally, Ifa Is granted reed/write access, a -* b must be recorded for each
transaction b with WO, p), and b -- a must be recorded for each transactlon

b with R(b, p) (both might be recorded with respec to the same transaction).

Validation request. Transaction a requests valkdaton.

VI (postpone). For each active or pending bansaction b with b a, do

one of the following.

V1.1 (skip). Skip b in this step.

VI.2 (abort). Abort b.

V1.3 ( =v ). Schedule b "ov a (thereby poualsy avoiding abortin
a or b).

It V1.3 was selected for any b, the validation request has been postponed, a

is now pending, and the CC history remains correct by C1. Later, the

validation request will be re-pocessed; for now, terminate.

V2 (abort). If ther e any active or pending transactions b with b -. a,

optionally abort a, and termina

V3 (validate). For each active or pending transaction b with b . abort

b. Then validate a, and t.rminats.

This completes the description of the CC paradigm. In the next sectlon t question of how
bet to use the paradigm Is conidered.

4.4. Policies

The correctnes criterion gIves only thos necessary and sufficient condilons ior tm
serIalIzabilIty of the validated transaction history . it doa not, for example, rule out the icas
in which a transaction reeds lnonslstlnt data (me R3 above), although it does rule out the

cas in which such a trnaction is ever validated. Nor does it rule out the cam in which a
transaction is never validated or aborted. In dening the paradigm for processing access
requests above, the only criteria used wer the correctness criterion, the indepn-dences of
the CC., and th assumption tha the purpose of scheduling Is to avoid aborting ba ona.
No other cteria, such as "fairness" or the guaranteed eventual successful completon of
transactions, wre used. &t in practice, ir, it is necessary t chocm one of the opions
prodd by the pardigm; second, additional correctnes properties such a wrisd
eventual succes comlein may be important and finmly. it is desirl eb to choose
opki os so a to optimize performance I posebl. These problems ww be deea with here In

W

.44
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a policy, which is that pert of the CC design tha choom the opions m Pw d by the
above padgm.

Some additional rcnes properties that may be Important have to do wit the two
mechanisMt we used to control transactions: cheduling and aborting. In the Case of
scheduling, two well-known problems are deadlock (in which the union of the mov and sC
relations is not a partial-ordering) and starvation (in which a transaction is repeatedly
scheduled so that it waits potentially forever). Assuming aborted transactions are
automatically restarted until they complete successfully (this may or may not be the ce in
an application), two analagous problems for aborting are cylic restart (in which a finite set of
transactions repeatedly cause each other to be aborted so that none of the transactions is
ever validated) and infinite restart (in which a transaction is repeatedly aborted due to
possible conflict with a potentially infinite set of transactions). Note: there does not appear
to be widespread agreement in the literature in terminology for these latter two problems.
Whether or not any of these conditions ae problems depends both on the policy and the
application: If the policy never chooses a scheduling option, clearly deadlock and starvation
ae not problems. On the other hand, perhaps deadlock and starvation are possible, but In
the application it is acceptable either to assume that (in the case that transactions ae
interactively generated) impatient users will abort their transactions, or to assume that the
LMM will abort transactions on timeoutls. This latter mechanism, which would oftn be used
In a distributed environment, could perhaps make deadlock detection unnecessary. It
deadlock detection is necessary, then there may be a policy question of how often to check
for possible deadlock (se [Gray 78D.

All known solutions to the problems of cyclic and Infinite restart Involve some kind of priority
scheme. The general idea is, firstk to design the policy so that transactions with sufficiently
high priority will never be aborted, and second, to give a transaction increasing priority as It
becomes older or is repeatedly aborted. Of course, priority schemes can be based on
performance criteria as wel. Some of the many possible priority schemes am (1) gve
increasing priority to transactions as they ae aborted; (2) give Increasing priort to
transactions ns their original starting time (that is a starting time not changed by rpemang a
transaction due to a failure) becomes older. these are the ti mmpsed approaches
(we the followin scun); (3) give priority to transactions tht ae genered toracielvr,
(4) give priority to trarcts that ae part of some real-time process; (5) give prt ft
transactions that ae for som reon expensive to rtry (e.g., "big" transactio). Variou
prority sewmm can also be combined.

The use of any priority scheme would Involve exlensin to the CC Idsrace as. p s in
Appendix II, e.g., Inclusion of a unique tansctlon ID, a starting tme, or a imnsla. els
aa paametr of Cbegin. Her, vaio boo policies thot do not on m y prio r imty
wil be studied. However, the extensions neomor to a pru w 14waa ple an m
Md srightfowaid. AN t nocesmy Is to Inufudo my Wngome m abouutlesin -
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required by the policy ft additional parmees to Cbehi.

Policies can be defined statically at desgn-time, or dynamically as policy modulos. In the
cue that policies we defined statically various optimizations can be made for exunphk In
some policies deadlock Is Impossible, and so deadlock detection may be omIte. On the
other hand, the policy module approach may offer efficiency advantages in the came I the
policy module is designed so as to be able to change policies at run-time. in the case dt
several policies wre of interest, but their differences cannot be predicted, it become e to
experiment with these policies by using a policy module that provides all such Policies. An

example is the policy module used in the Cm" system (se Chapter 7), which provided 330
distinct basic policies (see Chapter 5).

4.5. Generality of the Paradigm

A great deal of previous research in concurrency control design can be viewed as poicy
design. It seems that some confusion has often resulted due to the lack of a clear

separation of fundamental correctnes criteda (e.g., th correctness criteron above),
additional correctnes criteria (e.g., guaranteed eventual successful completion), and poicy
criteria (e.g., giving priority to transactions that are expensive to retry). Although the deign
problems may be listed independently, they may not be handled Ipend in the deign
itself. This has had the effect of making essentially similar concurrency controls seem

superficially quite different. In fact, in a recent extensive survey of proposed concurency
controls [Bernsteln and Goodman 811, it is concluded that rall practical concurrency control
methods can be analyzed as combinations and variatione of two basic spechronIselin

techniques: two-pham locking and timasamp ordering."

Two-phase locking (due to [Eswaran at al 76D is obtained from the above paradigm by
selecting options R2.3 and W2.3 (or alternatively, VI.3 in place of W2.3) whenever
possible In the asence of deadkx). There are many variation of timehtamp ordering
concurrency conrolp, and its true nature is often obscured by combining the technique with
two-phase locking types of policies. In what might be called "pure" d ordr4ig (no

two-phase locking component), options R2.2 or R3 and W2.2 or W3 are always etectad,
with R2.2 or W2.2 selected If (referring to the paradigm) a has an ealle original slling

time than b, and with R3 or W3 eIect otherwise. Although the bove claim of (Sernstsin
and Goodman 80] cannot be agreed with here (timestamp ordrin sems more properly a
policy priority scheme, and concurrency controls Involving a --o b options R4.1 id W4.1
we nolecte), they do clearly point out ta almost all propmmd concrrency contrOM we

essentlally shilar due to rhe fact that a common problem -- guarantesing miledzU y .- l

A m ran s d me CC design hees te clear on a baslc omecnes an

pol-y. Since potcy proles aw quite co uple1 In thmses, nd loMe to vwloaus
inbtdons under Men -aplialow and enwhomen-IW, th tould be hedid ip ar
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from the basic correctness problem of guaranOn seralizabUlity. As an example of a
complex policy problem, two.phae locking assumes that aborting transactions is expensive,
and tries to avoid this whenever possible, but at the expense of scheduling. Yet, given the
LMM description of Section 3.5, a transaction that will later be aborted Is still posif doing
useful work In caching copies of objects. Such a transaction, when restarted, could quickly
run to completion if very feo, object transle were then necessary. So whether aborting or

scheduling is more expensive is not obvious, and is most likely highly application dependent:
a truly general concurrency control should provide for all kinds of policies, Including those
that select a --o b options, such as [Kung and Robinson 81) and [Stearns and Rosenkrantz
81]. The advantages of separating basic correctness and policy, In system correctness and

maintainability, have been discussed In a more general context in [Everhart 79].

The paradigm above is completely general, given the following conditions.

1. Access requests cannot be predicted In advance.

2. The goal of scheduling Is to postpone transactions for as short a time as possible
in order to attempt to prevent abore

3. A transaction, once validated, cannot be aborted, and the validated transaction

history must be kept serializable in validation order.

Condition (1) is common to all application-Independent concurrency controls. Condition (2)
excludes highly heuristic scheduling techniques such as "wait 10 seconds and retry." Such
techniques may be valuable In disibuted systems, but are beyond the scope of this work.
Condition (3) seems to be common to all practical concurrm y controls. The notion of
validating a transaction, or giving It final approval, is also often called commling a
transaction (e.g., se [Gray 78] .- but also se the note below). This seem to be a
necessary simplification to make the problem of concurrency control nanage. In faok It
is hard to Imagine a system where one never knew for sure whether a transacion was
completed -. the notion of a validation or commit pont seem Inescapable.

On the other hand, maintaining the validated transaction history serializable in validori
order Is an efficiency constraint. Note that ty, as defined here, depend only an
the ordering of t numbers, and not on the numbers themseves. Thus, N
transaction a requests validation, and the current validated transaction history consisle of 1he
tronsactons numbered 1, 2. 3, ..., n, then a could conceva be validated under t macti
number 1 5 2.5. 3.5, etc. However, this would require makting red and wrls a fr
compl transactions, owoul probably prove excessively thneconsuming, and coM requs
(d on the ~ ) query validation ag well. Therefore, such schems we rP!d
here. It seems that in all existing or proposed concurrency controls in which trwMsu
have a commit or validation sW, the tranesio h11r i Inn sr s h
validation or commit order.

NOW:the sePaul nOtOn of doneurany control comwi (or vldlon) ad o
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manager commit apparently have previouuly been confused in fMt, in many systemy
we (ccidentally) the same, probably due to the lack of separation of CC design from RcvM
design. The CC commit point is described above. A ReM commitpoint is quite diert
assuming a memory hierarchy, a'number of RcvM comni points at leewls can be
defined as points at which, If memory at the given level of the hierarchy does n W, the
writes of transactions that have completed write-phases (say) to that level can be recovered.
Here, It was earlier decided to send the GMM new versions only after (CC) vaNdsom.for
efficiency and simplicity reasons, which results In CC commit points preedi oLmmit
-t.

Finally, the paradigm by no means soves the general concurrency control problem, since the
scope of concurrency control policy design is so large. For example, much of the reseerch
in distributed concurrency control design can be sen as the following problem: design the
policy so that a decision regarding an access request for an object p can be made using
only information that is present at the node where p Is stored. Another large area of
research In policy design, now made possible with the above general paradigm, is that of
designing a policy module that selects the optimal type of concurrency control bused on,
say, perfonrance monitoring or usage statistics. This is made possible by the above
paradigm since the policy module need not be restricted to any one type of policy; whatever
decisions are made by the policy module, the validated transaction history still remains
serallzable. For example, a policy module that selected options at random would still be a
valid policy module, in term of guaranteeing seriallubnlty.

4.6. Partitioning the Concurrency Control

In practice, it is often the case that possible conflicts between transactions arise rarely (see
* [Kung and Robinson 81] for a disbusslon of systems where this is likely to hold). In thme

cases, most of the work done by the CC is simply checking for each acces request for
some object that the read or write set for that object is empty, and after the requem has
been granted, updating the read or write set for that object. In the case that the CC form a
systm bottleneck, this suggests the following scheme for introducing paraleis in the CC:
partition the set of shared data objects in soe fashion (for example, by mapping each

bibect with lD ID lnto partition number ID MOO n. where there we n parts), and ue a
separate procem to manage the read and writ ost for each partiton. in a computer
network application, i oWcts are parliioned based on the node where the transaction to
c eated the object ori'n , the re"t is a type of primary siot approach.

The remaining information managed by the concurrency control is tnsaction InfOrmaon:
Vie satus of each ruming transaction, the se of objects accessed for each trunesction
(hese fts ae used to update goe proper read and write s when the t ranscton
complete or aorts), and d -, -v, aid ,*C relaions betaoien tm trnsactin In the
simplet cO, tVil inormaon can be managed by a single additional process, with a
maage, Inface bet'en ts p-aa e and the pmoesse managing ed and write sa.
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AfJsnavely, several processes could be used to mane transaction Information (for

example, the same processes that manage red and write ses), and all tbanscto
information could be soed in shmd memory (in this cm, access to transection
Information would have to be synchronhted, but designing the synchronization mechanim
does not present any fun entlly new problems).

In the ca of computer networks, a large number of schemes have ben proposed In which
transection Information as dsributed over the network (typically, If a conflict develops

between two transactions due to an access request for some object, this information is

tored at the node where the object is stored). The use of a central transaction number

counter can be avoided by determining the order In which transactions are possibly validated

beforehand (by assigning timestamps at the beginning of transactions, for example -- If the

timestamp of a is less than that of b, in order to validate both a and b, a must be validated

before b). If multi-version objects are used, the same ordering must be realized In version

numbers. The main problems with these approaches are that it is more difficult to be are
that the system is correct (the predetermined ordering is often used In an attempt to cause

identical decisions to be made at diffent nodes without communication, and so the
correctness argument depends on a priority scheme), and often ther are no resulting
performance advantages (see [Garcia-Molina 79D. However, if the network is geographicaly

distributed (with nodes in different cities, for example) and them is locality of relerence

(tansactions almost always access objects stored at the node where the transaction
originates), there are clear advantages to these approaches. In such ceses, If the Voil

validation ordering is determined beforehand, the paradigm can be made to apply by adding
the following sricton: a - b, a v b, or a b can be chosen as an option only if a
precedes b In the predetermined ordering.

I

"1

--
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5. Basic Policies
In this chapter a set of basic policies is defined. It will be seen that the design space for
concurrency controls is much larger than has previously been recognied -- even In the

uimplest cn in which all transactions are handled uniformly there is a large number of
distinct policies. This set of policies Mould be considered only as a foundation for polcy
development, since in practice there are many valuable extensions. Two extensions to
policies using scheduling, deadlock detection and queuing of requests, are described. Other
extensions involve the introduction of priority schemes, as described in Chapter 4. As
examples of how one might begin to develop a policy, possible philosophies behind several
policies are discussed.

5.1. Definition of the Basic Policies

A basic policy is defined hem as a policy in which all transactions are handled uniformly
without the use of priorities. For each type of request, the paradigm of the previous chapter
defines a set of transactions that may conflict with the transaction issuing the request. for a
read request for p, all transactions b with W(b, p) or WP(b, p); for a write request for p, al
transactions b with R(b, p) or RP(b, p); for a read/write request for p, all transactions b with
W(b, p), WP(b, p), R(b, p) or RP(b, p); and for a validation request from a, all transactlons b
with b - a. In each case, thee transactions will be called here simply the conctng
transactions. Given a request, if the set of conflicting transactions is non-empty, the poky
must be consulted. For a basic policy, all conflicting transactions are treated unfor*m. A
number of basic policies can be obtained by choosing one of the following options for each
type of request (the "kill/die" terminology is taken from [Roeenkrantz et al 78).

wait - have the requesting transaction wait on all conflicting tmnactions, using v
or C scheduling as given by the paradigm.

kill abort all conflicting transactions.

die abort the requesting transaction.

grant - grant the access request (not an option for a validaton requet.

For a reed/writs request from a for p, If the wait or k option is usd, one atight went to'
handle transactions b with R(b, p) or RP(b, p) but not W(b, p) nor WP(b, p) sepately from
transactions b with W(b, p) or WPb, p). For example, transactions b with R(b, p) or RP(b, p)
but not W(b, p) nor WP(b, p) could be ignored at this poiM, and possibly be waited on at the
validation point if the possible conflict does not turn into a real conflict, while tranadtios
with W(b, p) or WP(b, p) might be waited on at the current point. To he t sc hemes,
three sub-optione may be added to the wait or kill options n th case of a rsdwdst
reque fo ows

ir.e- wait on or abort only thse transactions that have ued a. conflicting red
hwum but hme not issued a conflicting, write mest
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write - wait on or abort only those transactions that have issued a conflicting wrs
requ L

a- wait on or abort all conflict transactions.

Using these sub-options, 4x4x(2x3 + 2)x3 a 384 basic policies have been defned. However,

thee Is some redundancy, If the grant option is never used, and the all sub-option Is used

for a read/write request, there will never be any conflicting transactions at the validation

point, and so the validation option is unused. Eliminating this redundancy, 384 - 3x3x3x2 n

330 distinct basic policies have been defined. In the Cm" system described in Chapter 7, a
policy module was used that provided all of these policles

One might also consider policies in which active and pending or postponed and non-

postponed transactions are differentiated to be basic policies, although these could also be

considered priorty schemes. In any case, sub-option to differentiate among classes of

transactions can be added to the above scheme for basic policies futher increasing the
number of policies.

5.2. Deadlock Detection

Policies that use wait options may avoid deadlock by the use of a priority scheme, at the

expense of increased probability of aborts (e.g., see (Rosenkrantz et al 78D. For the basic

policies defined above, though, deadlock is possible. In this section the deadlock detectlon

scheme used In the Cm" system. will be described. Some alternatives to this scheme are to
"not worry" about deadlock (relying on timouts to abort vamctions for example), or to
periodicll check the wait relaton for cycles (see [Gray 7]D.

The scheme used in the Cm* ystm wa to scheduie b =v a or b awea only If it was not
the- case that a -o" b, where lo- is the transitive closure of the union of the "v and noc

relations. If this could not be done, the requesng transaction was aborted. In this way the
union of the mv Nd - c relations was maintained as a partilal ordering. In order to
determine if a so* b, the following simple recursive procedure Was used.

1. If a -v b or a = c b, then a o# b -- return true.

2. For each transction c such at a ovc or a a c: If a b, then
a no b -- return true.

3 OtherMwse, it is not the case ta ts a -b -- return false,

At this point a modification that may be made to the basic policy wed option above can be
described. Consider the following example: a requests write access to p, and the requt is

postponed so that WP(a, p); next, b requests read acce to p, and a -oc b is stheduled.
Later, when the write request from a is re-processed, b will be a confliting trnsacton oms

RP(b, p), but scheduling b apva would lad to deadlock, and so a is abettd. This doss not
seem to wake sense In tem of a polec if & really should be abored due to the icsem

rwueet from b. why not abort a at the time te moses r is ree~ For ts, reason,

- _-IiI I l l I I --:' '4- : ' '' '
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in the Cm* policy module, when processing a request from a for p, all transactions b such
that a MV b or a wC b and RP(b, p) were removed from the set of conflicting tansactons
in the case that a wait option was selected. It should be clear by now that any modification
such as this does not affect fundamental correctness -- this is one of the main strengths of
the paradigm. In this case, the result Is a queueing structure on objects in which, for each
object, a number of readers can be waiting for a writer which can in turn be waiting on a
number of readers, etc., on a first-come first.served basis. Of course, other schemes could
be used. For example, a type of reader-priority scheme results If, on a read request from a
for p, transactions b with WP(b, p) are removed from the set of conflicting transactions

before applying the wait option.

5.3. Some "Interesting" Policies

The two-phase locking policy is obtained by selecting the wait option for read and write
requests, and the wait all option for read/write requests -- the validation option is redundant.
As noted earlier, the goal of this policy Is to avoid aborts if at all possible.

An optimistic policy is obtained by selecting the grant options for read, write, and read/writ
requests, and the kill option for validation requests. In this policy, transactions never walt,
and conflicting transactions "race" to the finish: given a set of conflicting transactions, the
transaction that first requests validation completes, and the conflicting transactions are
aborted.

Ther are a variety of policies that lie between the two-phase locking and optimistic policies.
In these polcis, cominations of wait, grant, die, and kill options are used. For example,
two-phase locking could be modified so as to grant a read request from a for p even If for
same b, W(b, p) -- although this introduces a --* b, a Is allowed to proceed immeliately, and
it may still be possible to validat both tanmsctions, having b wait on the validation of a
when b requests validation If this case arises (and If this does not cause deadlock). The
options for this po#iy would be: read . grant, write - wait, reed/wrt e- wait all, valdalon -
wai.

Similarly, the optimistic policy could be modified so that the wait option Is selected for a
validation request from a with rspect to all transactions b - a .- the phiosophy behind this
policy might be to retain the "never-walt" property of the optimistic policy for the re-
phases of transaction, but to wat If ne samy at the validation point in order to detrmie If
possible conflicts turn into true conflicts. The options for this policy am: red, wri,
read/writs - grant, vaNdon - wal.

Finall, policies that select only W or die options may seem uninteresting, but such policies
cou conceably prove useful in some applications due to their oxtreme smpty: for
these policies, the v, No, and - relations are unued, and so need not be maintined.
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6. Global Memory Managers
In this chapter the transaction support, query support, and garbage collection functions of

Wle3M will be described.

6.1. Memory Managment

The CAM must allocate and de-allocat storage space for objects, maintain the mapping
between the virtual description (ID and version number) of an object and Its physical

address(es), and find certain versions of an object given its ID. Since none of these
problems seem significantly new (in fact, several existing multi-version file systems solve

these problems), discussion of such a multi-version object system will be omid here.

6.2. Transaction Support

During the read-pm of a transaction, upon receiving Wreed, the GMM must find the most
recent version of the object requested. If the version number Is different than that of the
local copy (if any), the LMM will then read the new version of the object from shared
memory. That the transaction "sees" a consistent database must be ensured by the CC.
The GMM must also attempt to claim space in shared memory for new objects and new
versions of objects, as requested.

During the write-phase, the GMM updates the mapping from virtual descriptions to physical
addresses of each new version or new object as it is written. Then, upon receiving UTend,

the GMM will update a write-phase completion lits (WPCL), and possibly update a wAe-
phase completion counter (WPCC). The WPCC Is defined as the IargWst teraascoon number
such that the corresponding transaction and all lesser-numbed transactions have

completed their write-phases; the WPCL is defined as the list of transaction numbers gater
than or equal to the WPCC of all such transactions that have completed their write-phase.
This should be made clear by the following example.

Assume that all transactions numbered 1093 and less have completed their wri-
phases, and that the transactions numbered 1095, 1095, and 1098 have also
completed their write-phase Then the WPCC is currently 1093, aid the WPCL le:

104 10 , , 10Q.09&

Conding the example, upon receiving MTend for the transaction numbered 1100,
the WPCL becomes:

10A, 1095, 1096, 106, 1100,

and the WPCC remains unchanged. However, upon receiving Tend for Mie
transaction nmbered 1094, the WPCC becomes 1096, end te WPOL becomew

1096, 0w 1100.

~' -



GLOBAL MOPY MANAGERS 46

The WPCC and WPCL are of use in query support and garbage collection, as discussed

below, and in recovery, as mentioned In Chapter 3

6.3. Query Support

Suppose, as a query begins, the WPCL Ii:

1096,1096,1100.

At this point, a consistent version of the database can be observed, without any concurrency

control, by accessing for each object ID the greatest version of the object that is less than or
equal to 1096. This is the most recent version of the entire database that can be guaranteed

to be consistent since, given an object ID, whether or not there may later be a. version 1097,
1099, or a version greater than 1100 of this object, cannot now be determined.

By associating the current value of the WPCC with each query as Its query number (QN)
upon Obegin, and thereafter sending that query the greatest version of each object
requested that is less than or equal to Its QN, queries will always observe a consistent

database, without any CC support.

A possible problem with this scheme can be illustrated by the following example.

A user executes a transaction, the transaction is successful and is numbered 1098,

and when its write-phase completes the WPCL becomes:

1096, 1096, 1100,

with a WPCC of 1096. But now, if the same user executes a query before the write.

phase of the transaction numbered 1097 completes, the effect of the user's previous
transaction (numbered 1098) will not be visiblel

This problem aris only since wrte-phases are allowed to take plece asynchronously, which
is highly desirable for efficiency In the kinds of multiprocessor/network applications of
concern here. If the above example represents a true problem, one solution Is to restrict
write-phases to be sequential In transaction.number ordr, which may be acceptable In a

centralzed system.

In deocentralized system though, other alternatives are more attractive. A scheme Involving

asynchronous notification of application programs of the occurrence of certain events (such

as WPCC > 1098) is feasible. Another solution is to allow queries to "pick" their own ON --

in the example above, the query could pick the transaction number of the completed

transaction, 10M8, as ft ON. Then, the GMM could be designed so as to reply to Qbegin,

but postpone the reply until the WPCC became greater than or equal to the ON of a given

query, and the LMM could be designed so as to wait for such a reply. However, In order for

garbage collection (se below) to be correct, queries must not be allowed to pick ONs lem
thai the WPCC.

FINy, there is manoer afthemt, In which the GMM associates a copy of the current
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WPCL with each quer as the query begins. In fth example dxov. the Nest 10=, 10WS 1100
could be asociated with the query. In Ot alternative the GMM finds for ach reed requie
t greatest version of the object that e~he (1) is less than the minimum transaction numbo-
In the usociated WPCL copy. or (2) appears i the associated WPCL copy. This provides a
consistent view of the dasbase since, referring to the example sove, toe 00 has

guarantee thawtere wre no. conflicts between fth transactions numbered 109 or 1069 and
any lsser- numbered transaction.

6.4. Garbage Collection

Each time a new version of an object Is crete, fth Immediately teaser-numbd verio Of
fth obec becomes potential garbage -- "potential" garbag, since thvere may currently be

queries executing that will need to accms ti version. Whethe or not an object is '"true"
garbage can be determined by fth current minimum value of all ON*. say, min ON. If this
number is greater than or equal to the version number of the new version of an object, the
pr ceding version can then be garbag.-colleced, since all current and future queries will
now access versions of this abject with version numbers greater fthn or eulto tha of the
new version.

Note: In the case that WPCL copies awe associated with queries. then taking t ON of a
query to be the minimum of t associated WPCL copy, the above reasoning still applies.

Garbage can be collected as soon va It is generated by maintaining a garbage 1ist (GL) as
follows. The gabage list Is a lis of (version number, version set) pairs, where a version set
IS a set of (object ID. version number) palrs -- I.,. each element of a version sam refer to a
partcular vrsion of a parcular object. f a new version, with say version number NV, of the

* object with ID ID Is written, and OV is fth version number of the preceding version
(assuming there Is one), thwen the GL Is updated by adding (ID, OV) to the version Me In the
OL associated with version number NV (creating a now version aet If necessary). In the cae
tha the new version is a deleted version, (ID, NV) is also addto t set. Potential
garbage objects can now be collected nam son they become true garbage by freeing all
objects in the version set of the garag list asociated with version numbers NV less tha
or equal to min ON, for each new value of min ON. Finally, min ON can be conitiuuly
updated by recalculaton upon each query completion, or It could be Periodically updated.
An example is fs ollows

Let fth GL currently be

(109, f(11005), (2,1001))), (106, ((1,1096). (4098))), (106. ((3,1001))),

and let mli ON a 1096. Now, 11 verson 109 of the object wit ID5 is writen rd
the larges numbered version of ti object was prWevuay 1050, the GL. bscomss 11

(1096, W(11096), (2.100))), (10W, ((1,1096). (4,99W), (5,1050))), (106W ((31001))).

Later Whe all querie with ON. 1065 have comi piltsd n ON Inc rsm to IMI
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say (i.e., assume there is still an uncom~lted query with QN 1096). Thean, after

garbage-collecting versions 1095 of object 1 and 1001 of object 2, the GL becomes:

(1097, ((1,106), (4,998), (5,1050))), (1098, ((3,1001))).

6.5. Partitioning the Global Memory Manager

Parallelism can be introduced in the GMM by partitioning the set of shared data objects in

some fashion (for example, if there are several secondary memory devices, If the constraint

is made that all versions of an object must be stored on the same device, an object can be

mapped to a partition corresponding to the device on which the obje's versions are

stored), and by using a process for each partition to manage storage allocation and the ID,

version u) physical address mapping for objects in that partition. Furthermore, the GL can

be partitioned in the same fashion: if object p belongs to partition i, potential garbage

versions of p are recorded in garbage list GLi, say. Each GL can be managed by a separate

process, with a message interface between mapping and GL processes, or If the mapping

and GL partition schemes are identical, the mapping processes can also perform garbage-
collection. In order to balance free storage among the mapping processes, an additional

process could be used to generate new object IDs, with IDs chosen in such a fashion that
each newly created object maps to that partition containing the most free storage.

Alternatively, for computer network applications for example, the LMM could always first try

object creation via a mapping process that was "close" in the network, with other mapping
processes used if this falls.

The WPCL, WPCC, and QN information are analagous to transaction Information for the

CC -- these structures can be managed by a single process, or by several processes

accessing these structures in shared memory.

There does not seem to be any straight-forward way to distribute the WPCL, WPCC, and ON
information in a way that would offer any performance advantages -- this is because these

structures are all intimately connected with the central transaction number coune of the
CC. In the types of proposed systems mentioned in Section 4.6 In which the use of a central

transaction number counter is avoiled by using timestamps or other schemes, Oe
structures are simply omitted. The reults are that queries must be controlled by the CC

(however, by having queries access sufficiently old versions of the database, queries will
almost never be aborted), and that there do not seem to be any algorithms for garbage

collection other than heuristic techniques (for example, it might be assumed that any
potential garbage version more than a day old could be deleted).

119P,~. 77 T
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7. Transaction Processing on Cm*
In order to (1) develop algorithm for the concurrency control designs previously presented,
(2) experimentally veril the correctness of these algorithms, (3) investigate the limitations of
multiprocessor system for transaction processing, and (4) demonstrate the usefulness of the
policy module approach for -policy experimtentation on a complex system, a transaction
processing system was Implemented on Cm-/Medusa. In this chaptier this sesfm is
described, the result of the experiments are presented, and some Implicatons of thee
results are discussed. The concurrency control algorithm are given In Appendix N.

7.1. Overview of Cm/Medusa
Cm*. a distributed multi-microprocesso designed and built at Carnegie-Mellon Univerit
(see [Swan et al 77D., currently consists of 50 computer modules (Gins) and fie
communication controllers (Kinaps), as shown In Figure 7.1. Each Cm consists of a DEC
LSI- 11 microprocesor, primary .memory of 64K or 128K bytes, various devices, and a local
switch (Slocal). The Slocal contains relocation tables that allow each memory reference to
be mapped either to memory or devices on fte associated LSI-1 1 bus (a local reference) or
to be passed to the Kinap for the cluster (a non-local reference). Each Kinap Is a
microprogrammable microprocessor specially designed as a communication controller, and Is
responsible for mapping non-local memory references either to another Cm In the same

Kinap? Kmap2 Kmap3 Kmnap4 Kmap

CrM ... Cmla0 Cm1i ... Cm2O Cm2l ... Cm30 Cin3l ... Cm40 Cm4l ... CmO

- Itrchste bus I +-r-
map but s. I-8"

-LSI-1 bus Up rnnnnn devift ..

Flgure?7.1. Cm* Archtecture
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Figure 7.2. Medusa Task Force Structure

cluster (an intraclustor referene), or through another Kmap to a Cm in a different ckawe
(an intercluater reference). However, because the Kmaps are 0lcrPr=NOgr me this
mapping can tak Place in many. different and complex ways. In particular, Itis possible to
microprogramn key operating systemn commuiato primitives In the Kmmps.

Medusa (see [Outaerou at al SOD is one of two operating system desgned arid
Implemented for Cmn (the other is 86arCS -- for more detailed description of CmO, Medusa.
and 86.06, along with a variety of information regarding CmOrelatd research, am the
research review [Jones and Gehringer SOD. The two primery uses of the Kmape under
Medusa are for message communicaion and address mapping - these functon are
implemented in the Kmap microcode. Msage commicto In Medusa takes place using
objects called pipes, and Is an extension of the th-dx pipe mechanism (wee [fttchise nd
Thompson 74D. Here, It need only be -ned that the extensions are such goa the
asumptions of Section 3.1 regarding cmucaonbetween subsyslems. can be ealled

*using mechanisms -lod prvie.

Medua& provids a structure called a task lowse to Implement operating system functions and
user programis. A task force is a collection of actilles (or processes, each of wh am
referenc, a distinct collection of private obj ect, t such me code p geam and all of whih carm
reference a single collection of shared obects, such as communication pipes or shime d a
POPes Access to an Object is gained through a descrIptor ait; thus, flor each U&a force
there Is a shared descritor 11sf (SMt), and for each activity there Is a pr!vt desc*Sr Olt
(POL). This teak forc structure is shown In Figure 7.2. The mapping of arn aCOMs to wr
object fhrough a deer isporNt Is suipported by the Kmap microcode, in pwrtlg6,

Ip
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descriptors are cached in the Kmap, so that access to a non-local object can usally
proceed without the extra step of fetching a descriptor from a descriptor list In the came
that the object is local to the activity accessing the object, a simple access (I.e., an access

produced by an 181-11 instruction) can proceed directly through the Smap without involving

the Kmap. Because of this, all code and private data pages are typically made local (if

possible) for performance reason

Medusa supports various operating system functions through a collection of task forces

called utilities. Utilities re special kinds of tak forces In that among othier differences, a

descriptor list of input pipes to the utilities, called the utility descriptor list (UDL), is stored in

each Cm. Thus, any activity running on any Cm can invoke an operating system function by

sending a message to the utility implementing that function through the approplae pipe in

the UDL. Of the utilities provided by Medusa, the only one that was used during the course

of the experiments described below was the file system (other utilities were used during

startup and after the completion of experiments). The file system utility handles all input and

output devices, and provides a hierarchical file structure.

7.2. The Transaction Processing System

The transaction processing system was Implemented as a single task force of eleven

activities: a master activity, eight transaction-processor activities (TP1, TP2, ..., T13), a CC

activity, and a GUM activity. The SDL/PCL structure of this tsk force is shown in Figure

7.A. For the shared Cm memory system (see below), the SDL shown in the figure was

extended to Include 48 descriptors for swred Medusa (400-bys) pges.

All experiments took place using a three-cluster partition of the system. In each case, all

activities (including utility activities) were allocated their own Cm, and all code, stack, and

data pages were local. Since Medusa did not support context swaps, activities we always

resident In their respective Cms. The data objects supported at the virual intrnal level wre

512-byto pages.

The CC activity Implemented all functions ftmeded by the CC paradigm, sand a policy module
providing all basic policies was used, with deadlock detection and request quoueng
extensions as dae in Section 5.2. At the stat of each experiment a policy ws chosen

by sending the CC activ t a message containn te opon-m to be wed by ft policy
module. For the policy experiment, the following fou policies were usd

locking: read, writs, rmd/wrk - wait (the validation option is redundant
lock-opt road grant, write - wait, red/wrt - wet of, valldeton- waft.

opt-lock: read, write, read/write - grant, validation . walt.

optimis c: read, write, red/write'- grant, va ildaon W.

For the throughpuat experimenis, the lokin and optimiti Poliie wer used
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the contents of the tuple. A query to find one tuple first randomly selectd a relation (any
relation equally likely), then selected an Index (any Index for the relation equally likely), then
slected an index value (any index value eqully likely), and then found aid retrieved the

AtO tuge with a corrms di dmfi vage e greater than or ea ba the k the ra
such a tiple, otherwise th tuple with the maximal value for tht domain was rtrived. A
deleton proceeded in the seo fashion as a query, excelpt that the retriovod ttplo wa

to . Isp t intransction failed du to conflicato o the actbe lwahys iumedlitly se t

a mge to the Irsaction procesor activity to rph the transaction. Below, thisrevent
is referred to as a -rosaf/.

Although this sytem used artificially generated btranactions, It was based on an earlier "real"
system (i.e., usble-for applications). This system relied on the unique identificaton of tWpm

to support interactive examination and modification of the database without user Interaction
during the course of a query or transaction. Although the only tralnsactions. defined wore

insertions and deletions, and all defined queries were queries to find a single tuple (in
various ways), the user was generally given the .appearance of exclusive interactiv acces

to the database by "remembering" the state of the user, in particular the contents and the
unique identification of the most recently accessed tuple, between transactions and queries.
Thus, the master activity was designed to simulate to a limited extent the behavior of a
number of user interfaces of this type. In practice, the master activity would be replaced by
a collection of user interface activi es, as shown earlier In Figure 2.5.

In addition to driving the transaction processor activities, the master activity collected a trace
of the experiment. In order to see what information was collected during a trace, pert of a
trace file is shown in Figure 7.5.

7.3. Maximum Throughput Experiments

As ther are few multiprocessor transaction processing systems In existence, their ations
ae of interest. Using the locking and optimistic policies, experiments were performed to
investigale the maximum throughput as the number of transaction processor activities was
incread. In these experiments 100 insertions or deletions were performed, either equally
likely. Shared memory was acopesed by random file access through the Medusa file system.
The master activity, upon receiving a comp*ton message from a transaction processor
activity, always mmediately sent a message to begina now transection (if there we any
transactions left to perform). The obered toughputs are shown In Figure 7

Separate experiments with the Medusa file syslem determined that the file system activity'
becamne a bottleneck for this system as the number of transaction processors irased. In
order to no the effects of removing this bottleneck, a new system was developed in wh~ch
the unused memory of bar 128K Cm was used a shared memory, accessed through t
SIDL (the le systeom ws all used by the masler activity to read clock values end to writ
the traue 1111). Aeads or m 1 of 612.byte pages wa performed ueng a Wik Oe

4
I

mii i .. .. - ... .
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time transaction processor number command
r-, r-

10:06.46 TOG 1: Insert 106
10:06.81 TOO 1: read conflict has occurred, aborting
400
10:06.06 TOG1I~nsiertI1106 - rest
10:06.98 TOGS5: OK - jccess
11741
10:07.06 TOGS5: wait 7 transaction just completed sent
10:07.06 TOG 2: OK I I read messaes to GUM.
20 154 actually read 7 page..
10:07.11 TOG 2: wait 3 wrote 4 pags
10:07.16 TOG 7:0OK
1025
10:07.18S TOG?7: wait 3
10:07 .20 TOG S: select A
10:07.23 TOGS8: Insert 1106
10:07.35 TOG 3: select C
10:07.36 TOG 3: delet 13671
10:08.26 TOG 1:0OK
1333
10:08.30 TOG 1: waft 4
10:08.80 TOG 3:0OK
1164
10:06.83 TOG 3: walt 3
10:06.66 TOG 8:0OK
1183

Figure 7.5. Part of an Experiment's Trace

operation provided by the Medusa Kmap microcode. This system was not believed to be
unrealistic, since it is possible to transfer data to disks at the maximal Kmap block mowe rats
of approximately 300 512-byte blocks/second. The observed throughputs for this no
system awe shown in Figure 7.7.

Then experiments clearly show that significant Increitas In throughput we possible for
transaction processing using multiprocessor architectures, eve when the database, Is highly
share. However, thee wre two Imittn on the Increases that can be achleveit shaed
memory bandwidth and transection conflicL

With rspect, to shaed memory bKanit, using the Medusa ftl system, no Increses in
throughput could be achieved with more tha four transaction processors. The bnteeneak
would have occurred even earlier If object were not cached I local mmory: in the to of
the four transaction processor locking experient using the file "tom, owt of an asr isVso
14.04 reed requests to the 0MM, an average of only 6.72 pae had to We red *rM d*We
memory, giving a "cache-hit" ratio of 69% (the meaning of asctw'hit lut Is oAsmlt
unique, In 90a oncen the LMM deternes that a Wecal copy Is the cN. e wmlno lulih
1mssae to the GMM fa"s plebe). Thio rati was qv1 ' 00 aftsiws
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Other approaches to reducing the shared memory bandwidth *nftmln rely on RcdM dlWg
As noted above, the RcdM used for these exporiments attempted to optimize strage by
packing records into "nerby" record pages if possible (this RcdM was earlier developed on
a system In which secondary storage was at a premium). The result is that for aome
transactione, a large number of pages were examined (for the four transaction pocesso
* ktidng experiment using the file system, the maximum number of reed requests to the GMM
for any one transaction was 23). A RcdM using a simpler record storage allocation scheme
would encounter the shared memory bottleneck at a later point, however, storage would be
utilized less effectively, and queries could be more expensive. As noted in Appendix I, there
are many alternatives in RcdM design, and It Is a field of on-going research.

The most direct way to approach this limitaibon, though, is to increase shared memory
bandwidth. In the experiments using shared Cm memory, for example, a dedicated disk
controller could be used on each shared memory Cm, with the primary memory of the O
used as a large buffer. This example Illustrates two techniques: provide more parallelism in
the path to shared memory (multiple disk controllers), and use intermediate levels in the
memory hierarchy (primary Cm memories).

The transaction conflict limitation is more difficult to avoid, since it has the effect of maldng
additional parallelism uselees if there is a conflict between two transactions, they must (in
the general cae) proceed sequentially.

Again, RcdM design plays an Important part. If records were not indexed under their
reversed IDe in thee experiments, there would have been conflicts between almost every st
of concurrent insertions to the sam relation. On the other hand, a RcdM using a smpler
record storage allocation scheme could have had fewer conflicts since the reed st aim
would have been smaller.

There is also a problem at the virtual Internal level: If conceptual entities we mapped to
larger internal entitles, conflicts can occur between transactions that do not conceptualy
conflict. Given the framework of Chapter 2, the only solution is to dlecre ae the granulary
of the oblects provided at the Internal level. Other approaches rely on introduclng
applicatondependence into the concurrency control so that lew claes of tu-clon
histories we allowed (e.g., m [Kung & Papadimitrtou 791), but we beyond tho scope of V111
work.

The afecis of transaction conflict can be seen in Figures 7.6 and 7.7, particularly in the cass
of th optimistic pocy-- for the optimistic Policy, when a transaction is vsllidted,
conflicting transaction e oed. In Owm experiments, the doe of cocurrency
icred as the number of transection processors Incr@asd, and so the probailit of
con-ic icreased e well. This ee~ m be an as an ncrae in the a'verage wus of
re for each tractlm as shown in Figures 7.6 and 7.9. Note th restarts aer
much lass using the Ming poli, since a trnsction is ons d only I sche im ft
mWo wuld cause d&dlok.
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For the locking policy, increased transaction conflict results In increased waiting due to
scheduling. However, as concurrency increases, there is also increased waiting on shared
system resources (for this system, these are the file system, the Kmaps, and the master,
GMM, and CC activities). The average execution times (including waiting times) for
transactions that were successful on the first attempt under the locking and optimistic
policies are shown in Figures 7.10 and 7.11. Since these curves are almost identical, and

under the optimistic policy there is no waiting due to scheduling, it must be concluded that
for this system waiting due to scheduling is negligible as compared to waiting on shared

system resources. This explains why the locking policy generally gave higher throughput:
since waiting due to scheduling is negligible, the effect of restarts dominates. In those three
cases in which the optimistic policy gave slightly higher throughput, there was by chance a
combination of less total work to perform using the optimistic policy (where total work wa
measured by the total number of shared page accesses) and a relatively small difference In
restarts for the two policies. This can be seen by comparing Figures 7.12 and 7.13 with the
previous figures.

7.4. Policy Experiments

Using a policy module that provides many policies, it is easy to Investigate the performance

of policies on a complex system. Using the locking, lock-opt, opt-lock, and optimistic
policies, a number of experiments were conducted as a demonstration. The experiments
were as follows.

1. The shared Cm memory system was used, with eight transaction processors.

2. 500 queries, insertions, or deletions were performed.

3. Transaction processor activities waited a randomly generated amount of time

between transactions and queries, from 0 to 2 seconds.

4. The probability of a query was 1/2, and Insertion and deletion probabilities were

each 1/4.

5. Three different experiments with three different nital databases were conducted
for each policy by varying the Initial seed for the random number generator.

The results of these experiments are shown in Table A.

Since for the Cm* system the effect of waiting due to scheduling is negligible, the loking

policy uniformly gave the best throughput, as expected. However, in the firt sM of
experiments, the difference in transaction conflicts between the locking policy and the other
policies was less than In the latter two asts of experiments. The result was that in this frst

set of experinuts, both the optimistic and lock-opt policies gave better average respones
tmes than the locking poliy, with the lock-opt policy giving the bat responsmetm -- the
IncrWd restarts were not enough to cancel out the dereased s time sutn

rm ls scheduling. In the latter experimenet the difOfrence in reorts was gret, and

i
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ince response time includes the time taken by unsuccessful trmnactIons, the locking poll"
gave the bea response.

EXEC. EXEC. EXEC. EXEC.

NUM OF PAGE TIME TIOE TIME TIME RESPCNSE

CRIN RESTARTSA ACCESSESM Fr Cs FTFC  RB CO RFCD TS&AD ,got j

locking 1 .02 3.38, 1.81 .60 .82 .78 F .61 5.87
lock-opt 1 .0 3.31, 1.59 .55 .5 .78 .81 .57 5.77

opt-lock 1 .08 3.83 1.86 .62 .. 74 .85 .89 .67 5.62

opt mistic 1 .05 3.64,'1.64 .56 .64 .86 .41 .60 5.73

locking 2 .01 3.78, 1.71 .57 .74 .71 F .58 5.m5

lock-opt 2 .05 3.79,1.71 .57 .59 .84 .79 .61 5.75

opt-lock 2 .07 4.06,1.84 .60 .63 .88 .72 .65 .62

optimistic 2 .05 3.54,1.58 .55 .(1 .90 .56 .5e 5.9

locking 3 .02 4.06,1.76 .58 .61 .80 .75 .59 5.73

lock-opt 3 .0 4.04,1.67 .57 .65 .90 .62 .63 5.55
opt-lock 3 .07 4.11,1.94 .58 .73 .78 .67 .63 5.53

optimistic 3 .06 4.00, 1.92 .60 .58 .77 .58 .06 551

A Avwaggd ove Ll oPlsd ranacions or quwls.

8 vhnd paw rad. hard pims wimn.

cFS - N Um Mm (kckm*V qulss), FTF - frM tn fare, RS. mW t oce F rM

D Tktm in secnds.

ECam~sgi tramecin or querisseon.
FDd not wc.

Table A. Policy Experiments
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6. Conclusion
Now Wad the fourlevel deign framwor concurrency control paradigm, global weal;'

manager designs, and Cm" experments have been presented, various issues conceri this

approach to transaction processing system design can be considered In more dMil. In thI

concluding chapter, first, various of these Issues ae considered in turn. Next, conckions

drawn from the Implementation experience are given, and Implications of the Cme

experiments are discussed. Finally, some directions for future research are

8,1. On the Use of Physical Pointers

Currently, it is common practice to use physical pointers to data objects In datibN record

managers. The efficiency advantage Is that, given a pointer to an object, the object can be

rotrieved without first looking up the physical address corresponding to the poter.

However, this advantage disappears as soon as a memory hierarchy is Introduced. Uing a

memory hierarchy, an object can possibly be stored at several locations, and so some form

of lookup is necessary in any case. It seems clear that memory hierarchies are necessMry in

all but centralized unshared database applications.

8.2. On Multi-Version Objects

Once It has been decided that objects will be referred to virtually, and that ID -> address

mappings will be maintained, there are clear advantages to extending these mappings to

support multi-version objects. First, as observed in the introduction, it is common in

transaction processing systems to have large. queries. Without multi-version objects, queries
can observe consistent database states only with concurrency control support. It is Clearly

--. undesirable to abort large queries, and so some policy giving priority to large queries muit
be used. Alternatively, using a hierarchical locking concurrency control, the query could

begin by read-locking large portions of the database. In either case the result is that a

large portion of the databas cannot be modified by transactions while the large quey is in,

progress. With mult-version objects, using one of the schemes for query support presnte

earlier, queries do not affect concurrent transactions (except perhape by freezing garbe
collection -- m below). Some othe advantages to the use of multi-version object ae that

In distributed systems version numbers can be used to determine when copies are "out-f-

date" (as in the Cm" system), and that versions (together with a wrlte-phase-complatm IW

counter, or similar information) form a basis for recovery at the memory management IL,

An objection that has been raised to mult-version object scheme is that extra ige IS

necessary. If old versions am quickly garbage-collected, this does not in genral r~01 a
significant problem, and If version number are managed by conceptually cealNized eN

such garbage-conectlon is possible: a garbage-collection algorithm m desigi and
implemenit In which old verions e freed at the first point at which it can be guMnted

that no future traruction or query will access that venion. it is still possiblet Imho, 1ts

9r 1h .- ------ tobefrawnor a periodof timduetotheexecutinfa 5



CONOI.w"

query. However, In s gle-vrsin s mes, many suaclims i'uMlbe 4eosd wolr
te completion of the Mle query, whereas In a mul-vrelo scheme, all tranmsm npf oe
continue to run util storage is exhausted. Also, it Is posible to transler old velmlo
ertiary memory, as noted elior in Section U. .. Os would alow 1w age query to

continue to run (but at a much lowe rats), and would free secondary mmory VAs.

8.3. On General Concurrency Controls

Having removed query support as a concurrency control uncton, the problm of deeping
an efficient general.purpose concurrency control Is greatly simplified. Neverthelese te
question remains whether building record manager dependence into the concurrency control
can grealy improve efficiency. In terme of run-time efficiency., this queelon can probably
never be answered In a final way, since any modification of a transaction processing
system's access structures could in principle introduce a variety of now specialized
concurrency controls, all of which would have to be compared to many general concurrency
controls. Furthermore, even given a demonstrably good specialized concurrency control for
some access sructure, there are currently no techniques for generalizing the concurrency
control to the case in which the access structure is combined with other structure. For
example, none of the special locking protocols developed for B.trees (see [Samadl 761,
[Sayer and Scholnick 77], [Miller and Snyder 78], [Ellis 80], or (Lehman and Yao SID can be
applied directly to the record manager used in the Cm* system -- although this record
manager uses B-tree indexes, there is no global tree structure, since the index records of
several B-trem can all point to the same tuple. So regardless of the run.time efficiency of
specialized concurrency controls, there are clearly development and maintenance
advantages for general concurrency control .
Based on the Cm" experiments, It seems that general concurrency controls can provide
enough concurrency to effectively utilize Parallelism, giving significant increases in

throughput. it Is Important to realize, though, tha thes results depend on the fact ta a
record manager was used in which conceptually small transactions were usually physically
small as well, and in which conceptually non-conflicting transctions wre usually physially
non-conflicting. Since such properties are highly desirable for record m nagme in any cae,
one cannot seriously o~jec to the fact that the efficiency of a general con mrency contol
depends on these prop However, becsuso the use of record managers with tiese
properties Is so Important In the four-ievel architecture, earlier work on the problem of
desig Ing general Index structures for such record managers is repoed in Appe Wix L

8.4. Implementation Experience

Two conclusions can be drawn from the Cm" transaction processing syslem Plementubon
eperence. First, the four.level framework really Is valuable In the development of
trnmcion processing syslems. In the case of the Cm' system, the remrd manager wa
earlier developed on the DEC PIOlO architecture under an oaing system (TOPS1O)

-I -*
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completely difaren from Meduse timng a different concurvency control an d a 1
memory inemger (li concUtir control woo an ealy ipeitatoicof@ ' OPfleo

m@Uhod and the memory manager supported only single version objectu Lud*dW
of a common langube (BISS .- ane [l aal 711) were available on both ysimms, but this
should often be the cas for hlgh-level languages. The only modfications seumrI to Ohe
original reord manager, other than those due to differences in the lanuage dialects, were
due to a lack of Intonnan-tiing in the original design -- the original record manager
managed Its own loca page memory s a stack of pages and a few aemporary pagem. By
replacng these pages with pointers to pages and by moving local memory mmrgemeslt to
the 1MM, a more general design resulled. In fact, the modifled reord maneger comM be
used on both system and was actually debugge and tested on the POPIO Iamsem Since
the record nmge was by far the m o complex subsystem, this speeded dlevelopmient Wm
Immensely.

Second, Ifts concurrency control module providing all functions neede by the paradgm Is
Implemented first, It is then easy to Implement an~y particular general concurrency control as
a policy module. In the Cm* system, the policy module providing all basic poicle wilh
deadlock detection and request queueng consisted of 72 lines of (BLISS) code. The module
providing all functions needed by the paradigm can be thought of as a kernel i the HYDRA
sense: the HYDRA operating system kernel was defined to be a set of facilities "which am
both necessary and adequate for the construction of a large and IntersOtingem of
operating environments" [Wu#it &1 74). By replacing "a large and Interestdng clrn of
operating environments" with "all general concurrency fontrols", a general concurrency
control kernel is defined.

8.5. Implications of the Cm* Experiments

One conclusion that might be drawn from fth Cm* experiment is that, since mhe effeta
waiting due to scheduling was negligible, future Investigations of concurrency controls
should concentrate in locing-style policies. This conclusion Is tentative, at beat Cme is
currently a unique system, partly multiprocessor, partly computer network, and it Is not at all
clear that this result applies to dissimilar systems. Also, in thes experimnit Individual
processors wooe not mtprgammed, but the expense of scheduling could be drastcally
Increased it scheduling required context swaps. However, using a concurrency control
policy module It is eOy to Perform Initial experiments on eny *system to determine If tie
same suaonholds, and so questions regarding the general applicability of t result seem
somwhoat unimportant For example, It might be the case for some system thatthe efec of
restarts, was negligible (due to extremely high cache-hit ratios on restinta say), but 10s
waiting was expensive (due, to context swaps, say) -- after having deterineda ts pollsy
developers and maintalnere for t system would simply concerazt on policies tha avoWd

A more far-reaching conclusion can be drawn from mhe fac tha the performance Mfe '!Ross



among the various policls tested were uignOlsM* whea 1 w 16dMO.061
differences wing the two toes of shared mmory. The kmqicatW IS ta tis- mm
research in transaction processing systm design should concentrat mr o lMaWsbV4*
syst probletm such e Inclesg memory and communioatlon bandwidth, tlM on
concurrency control problem. A concurrency control polky oue. o t ow hnd, an
be seen as a maintenance and "tuning" tool that Is m et iiM af. s transaction
proc sing sysm has been developed.

8.6. Further Research .-

Sever areas for further research can be Identified. First, here the came in.wh!ph the
concurrency control has near.minimal information about transactions has bsen.. mwined:
the concurrency control is informed only of the I0 of each object as it is accessed, and
whether it is a read or write access. It has been argued that this approach works wal In

most transaction processing systems (given good record manager design and concurrency-
control-less queries), and tMt this approach has the advantage of separating concurrency
control design from database design. Nevertheless there are many systems In which this
approach is unacceptable. For example, some databases used for artificial intelligence

applications consist of numerous highly interconnected objects, and currently It does not
seem possible In these systems to maintain global consistency with small independent

transactions. Also, in network database systems, it may be desirable to traMr fnction
requests among nodes (e.g., "insert tuple T in relation R") instead of datL Although an
access-driven concurrency control could be used at each node, a function-driven

concurrency control could prove necessary at the global level. A problem for future
research then, Is the generalization of the policy approach to those cases in which additional
information is available to the concurrency control.

Another Issue that has not been explored here is the manner in which copies of objets are
handled in distributed systems. The concurrency control design that has bee developed

here applies directly to the case in which an object and all of Its copies are identified as a
single object, and It also applies to the cmw in which each copy is considered to be a
distinct object. In the latter case, though, the concurrency control can take advantage of the
knowledge of which objects we coples. This approach has been Important in the
development of robust concurrency controls (e.g., the voting algorithms of [Thomas 79D.

This can be seen as another example of a case in which it is desirable to make additin
Information available to the concurrency control.

Next, although the policy module approach can greatly reduce the need for perfomance
analysis of concurrency controls, it certainly does not eliminate it. For example, In order to
automatically switch to the optimal concurrency control method based on performance
monitoring or usage statistics, a deepr understanding of the performance chemewWass of
ahenative concurrency control methods Is necessary.

A,
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FinAll, a concurrency controla can be used to mainasin cOresAW"Wsy 14e amsO
p r geMW gsystem b in operatn, but a recovery aubsytsem0 is 1 oil~ to, 110 M MP,
lncons~snt datbase to a cuewillnt MWte Thu&, the concurenc QOeW 1W MMCsqYV
subsystm an in Ofts ss equally Mnporit Here, COncurenc OWd reoMve 0r1o11110
hw been akmost completely soluad tmohte read/wt phwn 1"mmnle in die roi

-uno recovery suppos Is ncesewy, amrc no shard obec is Modified; in fth Wrie
phsno shared abjec is raw, and so no concurrency control Intewctin Is flecemrY,

with the exception of Informing the concurrency control When th new verskon Of OOjeCIs
wrfttn in th write phma can be accessd by othe tranactone. It Is In exacty ti cas

tha concurrency control and recovery Interact. For sicemple It my be desiale for
recovery reasons not to make new versions of objecs accessible by other tanactions unti
the hav been written to dupl~e disks& say. A solution Is to assig thereovr
subsystm responibilt for informing the concurrency control when new versions of ob*e
wre accessibe. In any case, alternatives in communication between recovery subsyslems
and concurrency controls, and application of the Poliy approach to recovery subsystem
design, are problem for future research.



Appendix I. Design of RecordManagers-
As noted in Chapter 1, in practice, most transtions we conspitally oll. If ts datlmn
is organized as a collection of pages d the COrd manager can be deftned so * a
concepully small tnsaction is usually physically stug as well (ie., accesses a- mW
number of pages), then conrmncy control at the granularity of pa wi be a

One problem in designing the database so that conceptually small transactions wea usually
physically small is tat various search structures may be needed in order to support efick
queries and the me structures wil have to be perioicly updeid se 1 Il
modify the dsabee. In order to see how a record nmager can be deigned so that ownrt
structures are V up to date while still keeaing transactions h snag. in I*

appendix an outline of a record manager will be presented as an example. This recad

manager does not presuppose any particular data model; in practice, any given data mxa
would be supported at a higher record management level. Note that this is just an example,

and that many details have been omitted; there are many alternatives in record manager
design, sa presented in numerous textbooks (e.g.; see [Wiederhold 771, [Date 77), or [Ulman
80]) and elsewhere; furthermore, this is a problem of on-going research.

Although there are many data models that can be used at the conceptual level (the mast

popular being relational, hierarchical, network, and entity-relatlonship), all of thse data
models can be realized a collectons of ies of records. A record of type (ype, pe1 ...
WpeN.) is an element of domain0 x domain1 x ... x domain. 1, where each tpe, is som"
primtive type (e.g., integer, string, etc.), and each domain is the set of all valus of type
typer A fe is a Mt of records all of the same type. The various data models result from
decisions on whether or not pointers to records or film are allowed as primitive types, and If
they are allowed, restrictions on their use.

It is useful for a variety of reasons to have a means of referring to existing records without
referm.ng to their locations (at the virtual internal lev), for us record pointem, for
example. Therefore, let each record have a unique record ID. These can be generatd by
the Mname facility of the GMM. The advantage of not referring explicitly to a recorde
location (in tm of keeping transactions small) Is tat records may be moved-for atags
allocation purposes without requiring a large number of pointer modi

The basic operations drlNd on a ile ae inMtin a new record, deleting an id remd
given Its ID, and reftieving a rmord given its ID (Aume for simplicity that a record updalle Is
handled by a deletion of Vhe record to be updated followed by an inertdon of Oh updated
record, however keeping the old record I0). The proble s now we (1) to ind space In

some page for Inserting a new record, (2) to reclaim the unused space after a scord has
been deleted, and (3) to fnd a record given N ID. One structure that so s &N of toese
poblem nicely is the B4res [Bayr and McCrelght 721, of which we are may valn
(se [Comer 791 for a survey). Assuming that several records can be ftord per page, It mn
be wed in Ots cam by (1) maintining an Index of record location o rea d am t

_ - - .,* -_-. - 4*, .f.. ........ ..... .
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using the 8-tree storage allocation scheme for ,sod% tOWt Is, treant- -n pana .
reco r as Ow led pages of Ohe te structure. With respec to (2). ile mom ai
saorage will be utilIzed efectivel by sometimes redistribut records among -0en lip
(adiacent in reco ID space), crein or deleting pages a necesary. In fie am sa
seaer- records cannot be stored per page, groups of pages can be *inke ..Aer, and 9s0
group treated as one large page. simulating the simpler cae.

Th -tree structure has the properties that storage is utilized effetively (there Is' a
guaranteed minimum utilization of 50%, 66%, -or more, depending on the vaiant, wih
typically much higher utilization), that few pages are read in finding a record given t ID
(typIcally. 3 or 4, depending on page sie and number of records), and that usually only one
page is modified for an Insertion or a deletion (in the case that several records can be sOed
per pae).

Note on the generation of record los: in the case that there are many concurrent insertions,

It is not desirable that newly generated record il be close In record ID space, sinc
otherwise there would be many conflicts. If record ID are generated by using the currnt
time or by incrementing a counter, this could be a problem, and a scheme to handle It is to
index the record with ID ID under F(ID), where F is some "mdomzing" functon and then
lar find the record by searching for FQD). A simple asmple of an F
is F(an 1.2"' . .e 2 2  + *&) a 02* 'n- + & 2 .. +%.I, at is, revere the bky dWt of
the record ID.

The above structure is el that is needed in many database applicatlinn. These iniude
some network and hierarchical applications in which all records are found by stm tng from a
root record and then following pointers. However, if a pointer to a record Is not available,
finding a record given its ID is not a particularly useful operation. In such appicatlons (for

example, relational databases), secondary Indexs may be needed for query support.

For the record manager described below, secondary indexes of the folowing kind wll be

1. There ae idex records of the form

keyo, key,, ... , keYK., recoi IA

where key, Ia an elemn of a finite totally odoered set d1omain K I a
conmant and record ID refers to a record (in the Oile) with tiese vale is

some o sfield

2. it is desied to retrieve records based on queries of the form

I.e., rane quris

The Pr olem of designing a search srucre for Mile type of aecand ry kwsV* WO
of the am properies a B-tree has bean ea f l l.5

'-gI
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structure vm mmed *A K-44me aimc It combines goo~e i d MOrees (Sems 751
wid BWfgs. A am"y of dat stuctue for map a seecht 9 "eems ini LPeUVV and
Frlsdisn 791 The K-O-S-tree structures will now be preetd

Define a point to be an elemnent of domain0 x domain, x ... 3t doimain1*1, and a ro~n to
be Owe set of al points (x,, xj, ..., xi.,) satlefyin

for samte collection of min,, max, C domalnr Points can be represented most siflipl by
storing the xi, anid regions by storing the min, said ffDxr
MSelow,1It will be required that certain regions be diejont, and that their union be a region -

thus the strict Inequality on the right hand side of the region definition above. However, it
wil also be required that the union of certain regions be all of domain, x doman1 x .. x
domait;Kl. It is therefore necessary to create for each domain a special element 00,, which
is greater th all elements of domain,, and to allow the maxi to asume Oim values. it
is also convenient to define -O0, as the minimum Of domains.

LMe B-ses K-D-B-tre consis of a collection of pages and a variable root ID tha gives
the page ID of the root page. There are two types of pages in a K--tree

1. Region pages: region pages contain a collection of (region, page ID) pairs.

2. Point pages: point pages contain a collection of (point, record ID) pairs,
where record ID refer to a database record. The (point, record 1D)
pair Is in fact an Index record.

The following set of properties define the K-D-B-tree structure. The algorithm for rang
queries given below depends only on these properties, and the algorithms for Inertions said
deletions awe designed so as to preservesei properties.

1. Considering each pag e a node, and each page ID In a region page.es a
nods pointer, the reltting graph structure Is a multi-way tree with root root
1D. Furthermore, no region page contains a null pointer, and no region
page is empty (note that this, together with the fact that point pages do not
cntain- page l~s, mnens tha the point pages are the WOa nodes of the

*. The path length, In pages, from root page lo let page Is the sone for al
ledf pages.

*. I every region page, the region In the page we disoint, and their unioni Is
a rogon.

4. the rot papia regon p (tny not exist, or 0 theres only orw
pp Ien to elt wll be apont page), Ineunion of tregionis doha%
x domkin,~ x ... a domalnK.j.

~7i ~ , W114
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* eL If (region, child ID) occn in sieglon pg see the , s ed .t -

by chNd ID is a r om po, her the ilon of thermni ti lhedit pegs.
* is region.

. ng to (5), I the hd poe Is a point pme, then as the polnks in Owe
page must be in region.

Figure Al illusrates an example 2.8-tree. .

A range query can be expressm by specifying a rgon, the query region. It Is convenient to
think of regions as a cross-product of interval o x 1 x... xlI. 1 If some of the intrva of
a query region are full fains, the query Is a partial range qeiy if some of the iutervls
we pokft and the. rest are full domains, the query is a partial match query If a ll o the
intervals ae points, the query is an exact match query.

The algorithm to output all records satisfying a range query specified by query region s a

01. If root D is the null page ID, terminate. Odewise, let page be the mot
page.

02. If page Is a point page. then for each (point, record ID) pair in
page with point a member of query region, retrieve and output the
databme record with ID record ID.

03. Otherwise, for each (region, child ID) pair In page such that the
interection of region and query region Is non-empty, set page to be

* the pape refrre to by child ID, and recurse from (02).

Next, for imnrtions it Is necessary to define the splitting of a region along element x, of
domainr Lot the region be k x l1 x ... XIK. 1. Ifxi( 1, the region is not changed by
spltting. Othw, let I, - [mini, max,); spln the region results in two new regions

1. 10oX ... X [minp X0 X ... X IX.1,  .,;

2. 1o z ... x (k, mago x ... xlx

Reon(1) is calisdtheleft region and regon (2) the rghtreoom. Ifx, E 1*fA*x, ( mn e
thregon Is ad to ge to the left of xi If x, 2t maxf, the region Is said to li to t rlgm of
x1. A point (rO y, ..., yX.l) Is said to He to the left of xIfy<x1,andtotherght
of x oer"wis.

A point pae is spit along x1 by ceating two new point pages, the eft page and the righ
page; then transking all the (point, record ID) pairs In the pap to t ft Ist or right
page depndn on whether point lies to the left or the right of xf. and then deleng tf old
page,

A region pae is split along x, by creet two new regw pages, agan od te ft poe
mu te right page, filing es pM with regons dered from the old region pe ad



foot 1

II

DD re
KEY D ... morn t Ioss

ON of K-SPOW

S-reglon not In pes

Figure Al. Example 2-D--Tree

en delelig the old pog. Thim procedure tim ploe as loll For isoo
(region, pse ID) In the old region pe:
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Si. It region lies to the left of x1, add (region, pope ID) to the left
131ge10

S2. If region lies to the right of x, add (region, page ID) to the right

S3 1hewf titf alninin ew

S3.t. thatt thstrceue pag refreve d to (aeIDaon3.1).tigInpge it0
Thealgorithm ft Insrtn an ih InDrcr. pit eodI)I sfl

S32. plrit IDIul reat aln pinutiag coInrein (poit regiord ig retin

root- dd eto thegin ef of t o page andt teine gh.eiorgh Dth

12. thriet doangeatmthQeyOlpitwihfnsapitpg

Ntthtthat pocent isld rsb e deo the (MI) te. srcur s b

The alg reservedr Iepint an Inread rncthe (paget, redo oet)n Ispeal fle

geneIfraotin aDIsnuell, r moifypgentiing (pointer fields iD) eitndads
record) andt terIafti aeadlrtia

13. Add (point. weord ID) to the point page. If the page does not overflow,

K terminate. Otherwise, let page be the point page.
14. Let the 10 of page be old ID. Pick a domain, domain, and anelmn

rIn this domain, such that pae spit along i1 will result in two Page
that awe not overfull (since the number of points or regions In page
need only be decreased by one to avoid overflow, It is asy to ame tha
this Is always possible). Split page along )r giving lef anid right page
with 10s left ID and right ID.

15. If page was the root page, go to (1S). Otherwise, let page be the
parent page of page (this parent page was found during the exact
match query sMap above). Replace (region, old 10) In pope
with (left region, left ID) and (right region, right ID), where left region
and right region are obtained by spltting region along x. If this couain
page to overt 1w, repeat from (14); otherwise terminate.

. .........
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16. Creae a new region page containing the regiosm

(domain0 x ... x (.aO , x) x ... x domain.., ,left ID),

(domainO x ... x [xI , aOO ) x ... x domain,.,, right IO),

and ast root ID to its 10.

Vaiations of the above algorithm result from the way domain and x, are chosen in (14). One
way of choosing domain, is to do so cyclically, as follows. Store in each page a varable
splitting domain, Initialized to 0 in a root page when a new root page is created. When a

page splits, an elemet of domain,,vlg d n Is used, and the new pages have splitting
domain set to (splitting domain + 1) MOo K. This method is analagous to the cyclic choice
of domains in K-D.tree (see [Bentley 75]). Exceptions to this procedure, as well as other
techniques for choosing domain, and xr, are discussed in [Robinson 811.

Since the K-OB-tree structure does not preclude empty point pages, and has no minimum
storage utilization requirements, the basic deletion algorithm is very simple: find the Index
record (point, record ID) with an exact match query, and remove (point, record ID) from the

point page.

Unless there are very few deletions, or by chance insertions take place that "fill in the holes"
left by deletions, this basic deletion algorithm will be unacceptable due to the resulting low
storage utilization. In B-tree algorithms, this problem is solved by what are here considered
to be reorganization techniques. This reorganization takes place by re1di ng Index
records among two or more adjacent sibling pages. The same type of reorganization can be
performed on K-D-B-trees, providing the notion of adjacency can be generalized to more

than one dimension.

One way to generalize adjacency is as follows: If the union of two or more regions Is a
region, the regions are said to be joinable. Using this property, an outline of the algorithm to
"reorganize page P" is as follows (P could be an underfull point page produced by a

deletion, or an underfull region page produced by previous reorganization).

1. Let page be the parent page of P, containing (region, ID), where ID refers
.toP.

2. Find (region,, ID,), fregion, ID), ..., in page such that region, reg/on1,

region2, .... are joinable (this is always possile .- in the worst case, this will
be all the regions of page).

3a Catenate the pages with ID 1O, lb ID .... and than repeatedly spit Of

page and resulting pages until no page is overlulL

4. Replace (region, 10), (region1 , ID,), (region , Ibm) ... , In page with the
resulting new regions and page l
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5. If page is the root page, and It now contains only one pair (region, ID),I
delete page and set root ID to ID.

Another possible use of reorganization Is during insertions, since step (83) can leave empty
or near-empty point pages. This should probably be done only at the point page level, sinice
reorganization Itself makes use of step (S3) when performed at higher levels. However,
almost all pages are point pages (see the table below). Reorganization strategies for K-D-B3-
tree, and the performance of K-D-B-trees under reorganization, are subect of current
research.

A major diference between K-D-B-trees and B-trees with respect to insertions Is step (83),
which forces pages at lower levels to split even though they are not overfull. An Immediate
question is how badly step (S3) affects performance, in terms of storage utilization and page
accesses. Surprisingly, the performance of K-D-B-trees is quite good in spite of step (W3),
even without reorganization. Table B shows the Insertion characteristics of 2-D-B-
trees and 3-0-B-trees, without reorganization, and with index records randomly generated,
uniformly distributed In K-space. Details of thes and other experiments appear in (Robinson
81).

Including various secondary indexes, as desired, an example of the resulting file structure Is
shown in Figure A2. A problem of future research Is the optimal choice of multidimensional
secondary Indexes, given some kind of characterization of the "average" query.

PAME
PAGE PAGES AT EACH STORAGE ACCESSED/

K SIES SIZE LEVEL1 UTILIZATION ISETIONC

2 2.42 20.000 1.,2.40. 714 0.66 1.09. 3M

40,000 1-.4,80.148 0.86 10. 4.40

60.000 1. 7.122,2187 016 1.13.4.00

801000 1. 6,166,2304 0M6 1. 1&40

100,00 . 1,12200,3862 0.64 1.18,.40

3 36.63 20.000 1. 20.,514 011 1.18. IN

401000 1, 2.4A 1060 0DA6 1.16, 3.30

60.000 1. ,.61547 0.1 1.16. 40

60.000 1. 4.6W5,2064 0.60 1.16,4.01

100000 1.4.,106.2664 0.60 1.15k4.00

A Pp jgg a R.,P. wimeR Is madtum nun" ofreglmisn ai
region pegs, P is admun number of pokb ins aint pap

For example. "1, 20.514" me 1 pegs at level 1 (root pap).3
paes at level 2. anW 514 pagM ae1"l3 (poird peau.

C Page aceesd=*W.R. wher W lepageswhn. Rbonpied.
average over 20,00 kimera

Table B. Growing I-DS.Troe



File Descriptor Page

Record Type
st ring name,
integer floor, corridor, ofic

Indexes
record ID
name
floor, corridor, office 3D6Te

(additional misc. Information) flor, odr, office

record ID

page ID record ID

By Introducing record "yes that contain pointers to the descriptor pages of existing fils,
directories of files, etc., can be built, resulting In. i, lerarchical structure lie tha of the
record manager used In the Cm* system, for example.
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It might be thought that the introduction of new secondary indexes would require a
reorganization of the file, that Is, a large transaction, but even this can be avoided, auming
newly generated record IMe are monotonically Incressin. With this amump lon, one method
for solving the problem is as follows.

1. Create the new secondary Index, and Index every record Inserted to the file
from this point on through this index, as usual. However, mark the Index
as not being up to date, so that queries will avoid its use.

2. Let min ID and max ID be the minimum and maximum record ID In the file
at the time the new secondary Index is created. Start a poces that
repeatedly finds the next record ID In the file, from min ID to max ID, and

that Indexes each corresponding record in the new secondary index with

each Indexing operation implemented as a separate transaction.

3 When this process terminates, mark the index as being up to date.

The deletion of an existing secondary index, does not cause significant concurrency
problems, since once the pointer to the index is removed from the file descriptor page, all

future transactions or queries cannot access the index. The process of deleting all page of
the secondary index can then be performed with transactions of a size chosen without

regard to conlicts.

This concludes the outline of a possible record manager.

t*1. 7-A
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Appendix II. Concurrency Control Algorithms

In this appendix concurrency control algorithms are presented. In order to make them
algorithms available to a wider audience, the Cm* CC subsystem was re-programmed in

Pascal, following the original Bliss implementation fairly closely. The Intent of the Pascal
program below i to clearly show the logical nature of the algorithms, avoiding distracting
complexity. Thus, sets of object IDo are declared as Pascal sets, even though the usual bit-
vector representation would in practice be unacceptable (for example, 18-bit object ID& imply
bit-vectors of length 64K bits to represent object ID sets); in practice, these ts would be
represented as linked lists or stacks of object IN. (a linked list representation was used in

the Cm* CC subsystem). Similarly, structures that are logically asociatively accessed by
object I0 are declared as arrays indexed by object ID (these are RSet, RPSt, WSt, and
WPSet below); in practice, only information for object ID that were currently in use would
be stored. In the Cm* CC subsystem, for example, information for any given object I0 was

accessed through a hash table, entries of which pointed to a linked list of object IO records
with identical hash values. New object ID records were created as necessary, and when all
transaction processor sets in a particular object ID record became empty, the record was
deleted.

In order to test the Pascal implementation, terminal I/O was used in place of what had been
message sending and receiving, and a procedure to print transaction records was added.
All of this has been left intact, and as an aid to understanding the program, an example of
the execution of the program follows the program listing.

Note: the Pascal variant used was IBM's Pasca/VS; the only occurring differncas from
Pascal as described in [Jensen and Wirth 74] are the "otherwise" construct in the procedure
that reads an input line, and the terminal I/O Initialization procedures.

The program and example follow.

Ii

e!
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( ----------- ...- -- CONCUR CY CONTROL ------------- -- ... )

program CC(input, output);

{ for illustrative purposes, transaction processors are named )
{ '1', '2', ... , '9', and objects are named 'A', '', ..., 'Z'.

€onst
MinTPID - '1'; MazTPID - '9';
MinOID - 'A'; MaxOID - 'Z';

{--------------------------- TYPES .............................. )

type

TPID HMinTPID .. MaxTPID; ( transaction processor ID )

OlD M finOID .. MaxOID; { object ID I

TSet = set of TPID; { transaction set )

OSet - set of OlD; { object set )

ActType a (none, R, RW, W, V); ( access types I

DecType = (kill, wait, die, grant); { decisions I

SubOpType a (rdrs, wrtrs, all); ( sub-options )

StatType - (active, pending, { status }
validated, aborted, completed);

MsgType - (Cbegin, Cread, Cwrite, f messages I
Cend, Cvalid, Cabort, Cpolicy, Clook, Cquit);

TRec - record ( transaction record )
status: StatType; { transaction status )
access: AccType; ( type of most recent request )
OuJID: OlD; ( obj. ID for most recent access request )
WaitCount: integer; { number of trans.'s being waited on )
PrecedeSet, { set of trans.'s -> this trans. )
VwaitSet, t this trans. ->V set of trans.'s I
CvaitSet, { this trans. =>C set of trans.'s }
ReferSet: { set of trans.'s that refer in any )

TSet; { fashion to this trans. )
ObjSet: OSet set of objects for which this trans. )

( has requested access )
end;

7 ii



r--- ---------- MOML VARIABUS.........---------------

var
TNC: integer; ( transaction number counter )
RunSet: TSet; ( set of runnable transactiam s
CurrentTP: TPID; ( current transaction processor ID )
trans: arry[TPID| of TRec; ( transaction records }
Set, ( read sets 3
PSet, { read postponed sets }
WSet, ( write sets )
PSet: { write postponed sots }

array[OID] of TSet;

------------------------- PM VARIABLES ---------------------------

Roption, { read option )
Rwoption, ( read/write option )
Woption, ( write option )
Voption: ( validation option }

DecType;
RWSubOption: SubOpType; { read/write sub-option )

/

1-4-

j ~



-------------- INITIALULZTIONeeeeeeeeeeeeeeeeeeeeee

pocedure iziit;
var tp: TPID; Id: OID;
begin
TNC : -1;
RunSet :- [];
CurrentTP :- MinTPID;
for tp :- MinTPID toD MxTPID do

with trans[tp] do begin
status completed;
access :none;
ObJID :- NinOID;
WaitCount :0;
Precedeft
VWaitset
Cwaitset: ;
ReferSet I;
ObjSet := 11
end;

for id :- MinOID to MaxOID do begin

RPSet[id]:
WSetfid) 3
WPSetlidj [
end

end;



I

(---------.. -.. CIPM-UIT RIATION ...... -----...... )

{ determine if trans. oan tpl is waiting on trans. on tp2 )

function Vaitinuou(tpl, tp2: TPID): boolean;
label i(return);
var tp3: TPID;
begin
VaitingOn :- false;
with trns[tp2] do begin.

If tpl In (VwaitSet + CvitSet)
then Vait:inOn :- true
else for tp3 :- HiuTPID to axTPID do

If tp3 in (VWaitSet + CwaitSet)
then If WeitingOn(tpl, tp3)

then begin WaitingOn :8 true; gfto l(return) end
end;

1: (return)
end;

--------------------------- SET POLICY --------------------------- )

procedure P4policy(Rop, RWop. Wop, Vop: DecType; RWlSubOp: SubOpType);
begin
Roption :- Rop; RVoption :- RWop; Woption :- Wop; Vaoption :- Vop;
RWSubOption :a - JWSubOp;
if Voption g grant then Voption : kill ( grant is an illegal Vop )
end;

C.I

~ ''""

,,*'
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--------------- POLICY N1ODULE ------------ 0s)

(The following function decide& how to handle a request from )
(transaction processor tp. ConflSet is the set of possibly )
(conflicting transactions, and WaitSet and AbortSet will be)
(set to the lets of transactions to wait on or abort. The )
{result of the function is the decision for tp.

funcition Pfldecide(tp: TPID; ConfiSet: TSet;
var WaitSet, AbortSet: Thet): DecType;

var
tpi: TPID; decision: DecType;

begin
with transltp] do begin

Cas. access of
R: decision :Roption;
RU: decision : R~option;
U: decision W option;
V: decision :Voption end;

If (access - RU) and ((R~option - kill) or (RWoption =wait))

than case Rwsubopt ion of
all:
rdrs: ConflSet :ConflSet-(WSet[ObJIDJ)lJPSet[ObJID]);
wrtrs: ConfiSet :ConfISet*(WSetIObJID4.WPSet (ObiID)
end;

If decision - wait then begin ( check if deadlock would result
If access 0 V

then ( in order t'n allow queueing of requests
ConfiSet :- ConflSec -

((Vwait~et+CwaitSet) * RPSet[ObJ IDI);
for tpi :- tfinTPID to MaxTPID do

If tpi in Confl1Set
then if Waitingon(tpi, tp)

then decision :- die { default victim is requestorI
end;

If ConfiSet - ]then decision agrant;
VeitSef :-(J AbortSet:[I
case decision of

grant: ;
kill: AbortSet aCoat ISet;
wait: UaitSet aConfiSat;
die: a nd

end;
Pffdocide adecision
end;



------------------------- CC-TP CONIUICATION ---.------)

{ the following two procedures would in practice )
{ each send a message to a transaction processor )

procedure Sendlesult(tp: TFID; result: boolean);
begin
vrite('. > Message to TP', tp, ': ');
if result then vriteln('OK', else writeln('ABORT')
end;

procedure SendTN(tp: TPID; tn: integer);
begin vriteln('im> Message to TP', tp, ': OK, TN = ', tn:l) end;

{ the following procedure would in practice }
{ read a message from the CC input pipe. )
( Example terminal input: )
{ q quit )
( bl begin transaction on TP1 )
( r2B request for read access from TP2 for B )
{ pGGaGK change policy to optimistic method )

procedure Getfsg(var m: HsgType; var tp: TPID; var id: OD;
var Rop, RWop, Wop. Vop: DecType; var RWSubOp: SubOpType);

const MaxLnth - 6;
var line: array[1 .. MaxLnth) of char; i: 1..HaxLnth; bad: boolean;

procedure Setfsg(c: char);
begin case c of

Yb': m:uCbegin; 'r': m:-Cread; 'V: m:= Cwrite;
'v': m:- Cvalid; 'e': m:aCend; 'a': m:= Cabort;
'p': m:= Cpolicy; '1': m:- Clook; 'q': m:amCquit;

otherwise bad:-t rue end end;
procedure SetTPID(c: char);

begin if (c 2 ?IinTPID) and (c S HaxTPID)
then tp:ac else bad:-true end;

procedure SetOID(c: char);
begin if (c Z MinOID) and (c S MaxOID)

then id:-c else bad:=true end;
procedure SetOp(c: char; var a: DecType);

begin cae c of
'': o:mkill; 'Y': o:evait; 'D': o:-die; 'G': o:- grant;

otherwise bad :- true end end;
procedure SetSubOp(c: char; var so: SubOpType);

begin case c of
'r': so:=rdrs; 'w': so:qertrs; 'a': so:all;

otherwise bad : true end end;

-1 '



p OUIONOPCONOJFC-coITNOL FOR TASPP0~#~~

begin

vriteln(' (enter message,) )

for i :- 2 t NxLuth do
If eon then 1130(13 :u' lse 'read(lineji));

read in;
bad := false;
Setflsg(lineilj)f
If not bad then begin

If m - Cpolicy
then begin

Set~p(linst2], Rop); SetOp(lfte(3j. Wop);.
SetSubOp (line[ 41, RWSubOp); SetOp(lin*(51, Wop);
Set~p(line(6), Vop) end

else If a 0 Cquit
then begin

SetTPID(line(2]);

en;If (maCreed) or (m'mCwrite) then SetOID(lin&13J) end

if bad then writeln('(bad input, try again)')
until not bad;

if . - Cpolicy
then begin

wrive('Policy change message: NEW POLICY')
for ± := 2 to IlaiLuth do write(' ',linelil);

writelz end
else If (. 0 Cquit) and (a 0 Clook)

then begin
write('Message from TP', tp, : )
case a ofii Cbetin: writeIn ('BEGIN'); Creed: writaln('READ ',id);

Cwrite: writeln('VRITE ',id); Cvalid: writtln('VALIDATE');
Cend: writeln('END'); Cebort: writeWa'ABOWt') end end

el** If a Cquit
then writelzaC(exit)')

end;

je~I
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--- ----- ------- SCHEDULING - ---- -- -- --- - ----

(have tpl wait ouz-tp,2)

procedure schedule(tpl, tp2: TPID);
begin
with transjtpl] do begin

if (access R ) or
((access - N) and (tp2 In (WSetrobJIDJ+VPSetlobJIDI)))
then

trans[tp2l.CwaitSet :trans[+tp2J.CvaitSet + [tpl]
else

trans~tp2J.VwaitSet :trans~tp2l.VvaitSet + (tpl];
WaitCount :- WaitCount+1;
ReferSet :- ReferSet + ftp2]
end

end;

{postpone transaction)

procedure postpone~tp: TPID);
begin
with transfzpj do begin

if access - V
then status :- pending
else begin

if (ace" - R) or (access R W)
then RPSet[ObJID) :m RPSetfObJID) + [tp];

If (access,- W) or (access - RW)
then VWPSetIObjIDj :- WP~et(ObJID] + ftpJ;

ObjSet aObjSet + [ObjID]
end

and
end;
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{- --- MAINTAIN PRECEDE REIATION ----.- )-- - -

procedure precede(tpl, tp2: TPID);
begin
with transltpl] do begin

if (access. a R) or (access - RW)
then if tp2"in WSet[ObJID]

then begin
transftp2] .PrecedeSet :- trans ftp2] .Preced*Set + [tpl];
ReferSet :- ReferSet + (tp2]
end;

if (access - W) or (access - RW)
then if tp2 in RSet[ObjID]

then begin
PrecedeSet :- PrecedeSet + [tp2];
trans[tp2].ReferSet :- transitp2j.ReferSet + [tplJ
end

end
end;

----------------------- GRANT A REQUEST -------------------------- I

procedure GrantReq(tp: TPID);
begin
with trans[tpl do begin

if (access - R) or (access - RW)
then begin

RPSet[ObjID] :- RPSet[ObjID] - [tpj;
RSet[ObjID] :- RSetfObJID] + [tp]
end;

if (access - W) or (access - RW)
then begin

WPSet[ObjIDI :- 'PSet[ObjID] - (tp];
WSet[ObjID] :- WSe6LObjID] + [tp]
end;

ObjSet :- ObjSet + [ObjID]
end;

SendResult (tp, true)
end;

EL L
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------------- ABORT A TRANSACTION --------------

procedure abort(tp: TPID);
var tpi: TPID; id: OID;
begin
With trans~tp] do begin

status :*aborted;
for tpi : inTPID to HaxTPID do

begin
If tpi in (VwaitSet + CwaitSet)

then with transftpil do begin
WaitCount :- WaitCount-1;
If WaitCount - 0 then RunSet RunSet + [tpi]
end;

if tpi In Ref erSet then
with transltpij do begin

PrecedeSet :- PrecedeSet - ftp);
Vwairser Vwaitset - ftp);
CwaitSet :CwaitSet - ftp)
end

end;
PrecedeSet 1]f; VwaitSet :f;CwaitSet ] ReferSet:
WaitCount a0;

for id := MinOID to MaxOID do
if id in ObjSet then

begin
RSetfid] := RSetfid)-(tp]; RPSetfid) RPSet[idj-f'tp);
WSet~idI WSetidl-ftpJ; WPSetlid] aWPSe(idJ-(tpl
end;

ObjSet 1

end
end;

<4 ________________ ______7
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--------------------- VALIDATE A TRANSACTION -----------------------

procedure validate(tp: TPID);
var tpi: TPID; id: OID;
begin
with trans[tp] do begin

status : validated;
for tpi := KinTPID to MaxTPID do begin

if tpi in VwaitSet
then with trans[tpi] do begin

WaitCount :- WaitCount-1;
if WaitCount - 0 then RunSet = RunSet + [tpi]
end;

if tpi in ReferSet
then with trans[tpi] do begin

PrecedeSet := PrecedeSet - ItpJ end
end;

for id := MinOID to MaxOID do
if id in ObjSet

then RSet[id) := RSet[id] - [tp]
end;

SendTN(tp, TNC);
TNC := TNC+1
end;

{-------------------- COMPLETE A TRANSACTION ---------------------

procedure complete(tp: TPID);
var tpi: TPID; id: OlD;
begin
with transjtpJ do begin

status :m completed;
for tpi := HinTPID to MaxTPID do

if tpi in CwaitSet
ttden with trans[tpi) do begin

WaitCount :- WaitCount-I;
If WaitCount a 0 then RunSet : RunSet + [tpi]
end;

PrecedeSet t- 11; VwaitSet : (; CwaitSet : []; ReferSet : I);
WaitCount :a 0;
for id := MinOID to MaxOID do

If id in ObjSet
then WSet[id] := WSet[id] -[p];

ObjSet :
end

end;
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promdure proceas(tp: TPID; ConflSet: TSet);
ver decision: DecType; WaitSet, AbortSet: TSs; tpi: TID;
begin

{ let the policy determine bow to process this request -
decision :u PHdecide(tp, CoflSet, WaitSet, AbortSet),

( check if the policy decided to abort a validated tratactift, )
{ or if the policy decided to grant the request even tbouh there )
( was a validated conflicting transaction )
for tpi :- IinTPID to IaxTPID do

If transitpil.status - validated
then if

(tpi in AbortSet) or
( ((decision - grant) or (decision a kill)) and

(tpi In CouflSet) )
then begin decision := die; AbortSet : [] end;

( abort transactions in AbortSet )
for tpi :- MinTPID to KaxTPID do

f tpi In AbortSet then abort(tpi);

{ now process the request according to decision )

case decision of

die: begin abort(;p); SendResult(tp, false) ond;

wait: begin
for tpi :- MinTPID to MaxTPID do

f tpi in WaitSet then schodule(tp, tpi);
postpone(tp)
end;

kill: If trans[tpJ access a V

tn validate(tp)
also

begin
for tpi *= ?finTP1D to ?faxTPID do

if tpi In ConflSet then precede(tp, tpi);
GrantReq(tp)
end

end
end;

t 8
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----------------- ------ .... !-1* ......ne

procedure CCprocess;
var ConilSet: TSet;
begin

{repeatedly procebs requests while bunSe? is pion-empty)
while RunSet 0 [1 do booin

while rit (Current?? In 1unSet) do
If (CuzrrentTP < MWaTPID)

then CurrentTP :a suce(CurrentTP)
else CurrentTP :- IMinTPID;

with trans [CurrentTPJ do begin

{datermine set of possibly conflicting traunsactions)
case access of

R: ConfiStt: WSet(ObJIDJ * VPSet[ObJID);
RW: ConfiSet :mRSet[obJID) + RPSet[ObiIDI +

VSet[ObJID) + WPSetIObJIDj;
W: ConfiSet aRSettObJIDI + RPS~t[ObJlDI;
V: Coaft:: ProcedeSet and;

crettranasaction cant conflict with itself)
Conl~e :-ConfiSet - [CurrentTP];

(now process the request)
If ConfiSet n [1

then begin (process here to save some time)
If access -v

then validate (CurrentTP)
else GrantReq(CurrentTP)

end
es process(CurreatTP, ConfiSet);

(finished now with current transaction)
* Sunget : m wiot -(CurrentTPl

end
end

end;



-------------- 0 cc PIOCIDVSS ....... e- .-

(Suppose it wes desired to use a tiuestam-baaed p91107. The i)
(transaction records could be extended to inclue *tw s.~,3
{and "trmnstpj.tme :u <current time>" could be Add ti
{following procedure. Similar modifications could be'"e for
(any other policy based an information available at Cehs

placedure CCbegin(tp: TJ'ID);
begin
trens~tp).status :- active
end;

procedure CCvalid(tp: TPID);
begin
with trmns~tp] do begin

If status = aborted
then SendResult(tp, false)
es begin

access :V;
RunSet :RunSet + (tp;
CCprocess
end

end
end;

procedure CCend(tp. TPID);
begin
camplete(tp);
CMproceis
end;

procedure CCabort(tp: TPID);
begin
abort(tp);
CCprocess
end;



procedure ccreadctp: 11Th; 14: OlD);

wift trmat1 do heel
Nf $%at=s* aborted

then Seadkesult(tP. false)
eWs if tv in 3Bet~iA

Uses Seamlsult(tp, true)
elso

access :0 a;
ObjID :n 1d;
Ronset :U RunSt + Itp3;
ccpzucess
end

end
end;

procedure CWrte(tp: 77ID; 1d: 0Th);
begin
with trama~tpj do begin

If *tatus a aborted
Owen Seoudlesult(tp. false)

also If tp In vsetlid]
then SendResult(tp, true)

Oise

If tp In isetildi
then access :U
e110 aCCess :ft I;

ObJID :a ID;
Ruaset :0 SUn~et + ItpJ;
Cmprocess
end

end



VW Id:01;- s

P.'eosdWoo Vtet~(s: TSet);
yin mP: IPI

for' t := HIATPM IN NPID do
if P in IS *so urlts(tpl)

and;

Vzitela?3ASOr ',tp);
w~h trams I tI do boolm

write(' tatus: )
ese status of active: uuitela('activel);
pemdift: vritla'pamditg); Validated: vrItela(vldatbed');
aborted: vuitelaC'aborted); cowletod: vrItelaCeow#esei) sod;

writeC Access: ')-;
am access of amns: uritela(asms'); a: writala('3');
W: wi:.la'W'); V: yritelaCVI); V: witas(oV) ad;

witelaC' Oject 10: '. CIll);

wiltelac' Vaitesmt: ', VItCsimt:l);

wite(' procedssott ) Vialslb(P-8minle); ingsela
write(' Yusitket: ';VritoTStCitSet); writels;
wite(' Referlet: ') rItet(Sfezfat); uritela;

wite(' ObJ~et: 0);

I I I Objiet tem it d)
fiteiU tmIDt uaDd

sod
and;



vw 0: moom"61 sp: 113;W 1Ol;£
sop, Rep, VoipV Ip:3sTyog Usd: ISfp.;

Godbs~m ep, Id. IMP. Rse p V* Yp UWO),

amole: ObrCI p, d);

Ceslid: Covstd(tp);
Cmd: C~M4001
Cwbu: ctCbwt~p)oo
CPOI"7 111s73MP, Rep. VOP, %We, 006);
Clook: )*u)

sod

and;

Im"aCoepi);* Semms (etpm); I Salas11 tomia Le)I

pop11qo(vet alt .et'Ioat ,uul e); C daste to leukft
writelaC(utah 1mkft Pster As ofst)")$

ad
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